Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(44): 14388-14396, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31592664

RESUMO

Surface dilatational viscoelasticity of adsorbed layers of pluronics triblock copolymers at the air-water interface was measured using the oscillating barrier technique. The effect of molecular architecture and concentration on surface viscoelasticity was explored for two different types of pluronics with different degrees of hydrophobicity, Pluronic F-108 (Mw ≈ 14 600 g/mol) and Pluronic P-123 (Mw ≈ 5800 g/mol), the former exhibiting a larger hydrophilic to hydrophobic block length ratio. Frequency sweeps in the linear regime suggested that interfacial films of F-108 have higher surface limiting elasticity and larger in-plane and out-of-plane relaxation times at the same bulk concentration (the former possibly related to in-plane microstructure rearrangements, the latter to surface/bulk diffusion). Increasing the bulk concentration of pluronics from 1 to 100 µM led to a decrease in both in- and out-of-plane relaxation times. Large amplitude oscillatory dilatation (LAOD) tests were performed to capture nonlinear behavior of these interfacial films by means of elastic and viscous Lissajous plots. Nonlinearities in elastic responses were quantified through calculation of the strain-stiffening indices in extension SE and compression SC. Both pluronics exhibited strain softening in extension. In compression, P-123 showed strain-hardening and F-108 displayed a relatively linear response. Apparent strain hardening in extension was observed for the P-123 adsorbed film, at high strain, at a bulk concentration of 100 µM. However, at these strains, the response was dominated by the viscous contribution and calculation of strain rate-thickening factors in extension and compression showed that the overall response was strain rate-thinning in extension and strain rate-thickening in compression.

2.
Nanoscale ; 11(42): 20179-20193, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31617539

RESUMO

This study suggests that the self-assembly of a template-mediated liposome (TML) can be utilized as a general method to produce liposomes with controlled sizes. A polymer tethered core is used here as a starting configuration of a TML. Lipids anchored to the free ends of the tethered polymers direct the self-assembly of surrounding free lipid molecules to form liposome-like nanoparticles. Characterizing the flexibility of polymers by their persistence lengths, we performed large scale molecular simulations to investigate the self-assembly process of TMLs with tethered polymers of different stiffness values. The stiffness of tethered polymer is found to play a crucial role in the self-assembly process of TMLs. The flexible and rigid-like polymers can accelerate and delay the self-assembly of TMLs, respectively. In addition, the critical grafting of tethered polymers and required lipid concentrations to from perfectly encapsulated TMLs are found to increase with the flexibility of tethered polymers. To scrutinize these simulation-based findings, we synthesized DNA-polyethylene glycol (PEG) TMLs and performed corresponding experiments. To this end we incorporate increasing concentrations of DNA as a proxy for increasing the rigidity of the tethered polymers. We find that the resulting structures are indeed consistent with the simulated ones. Finally, a theory is developed that allows one to estimate the required free lipid number (or lipid concentration) and grafting density analytically for polymers of a given persistence length. Through these combined computational, experimental, and theoretical studies, we present a predictive model for determining the effect of polymer stiffness on the self-assembly of TMLs, which can be used as a general approach for obtaining perfectly encapsulated TMLs as potential drug delivery vehicles.


Assuntos
DNA/química , Nanopartículas/química , Polietilenoglicóis/química , Lipossomos
3.
Nanoscale ; 11(34): 15971-15983, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31424067

RESUMO

We explore the cellular uptake process of PEGylated liposomes and bicelles by investigating their membrane wrapping process using large-scale molecular dynamics simulations. We find that due to the mobility of ligands on the liposome/bicelle, the membrane wrapping process of a PEGylated liposome/bicelle can be divided into two stages, whose transition is determined by a critical wrapping fraction fc; it is reached when all the ligands are exhausted and bound to receptors within the cell membrane. Before this critical scenario is approached, the grafted polyethylene glycol (PEG) polymers aggregate together within the membrane-wrapped region of the liposome/bicelle, driven by ligand-receptor binding. For wrapping fractions f > fc, membrane wrapping cannot proceed unless a compressive membrane tension is provided. By systematically varying the membrane tension and PEG molar ratio, we establish phase diagrams about wrapping states for both PEGylated liposomes and bicelles. According to these diagrams, we find that the absolute value of the compressive membrane tension required by a fully wrapped PEGylated bicelle is smaller than that of the PEGylated liposome, indicating that the PEGylated bicelle is easily internalized by cells. Further theoretical analysis reveals that compared to a liposome, the flatter surface at the top of a bicelle makes it energetically more favored beyond the critical wrapping fraction fc. Our simulations confirm that the interplay between ligand mobility and NP geometry can significantly change the understanding about the influence of NP geometry on the membrane wrapping process. It can help us to better understand the cellular uptake process of the PEGylated liposome/bicelle and to improve the design of lipid-like NPs for drug delivery.


Assuntos
Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Ligantes , Modelos Biológicos , Simulação de Dinâmica Molecular , Nanopartículas , Transporte Biológico/efeitos dos fármacos , Humanos , Lipossomos , Nanopartículas/química , Nanopartículas/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia
4.
Soft Matter ; 15(32): 6547-6556, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31359025

RESUMO

Dendronized polymers (DPs) are large and compact main-chain linear polymers with a cylindrical shape and cross-sectional diameters of up to ∼15 nm. They are therefore considered molecular objects, and it was of interest whether given their experimentally accessible, well-defined dimensions, the density of individual DPs could be determined. We present measurements on individual, deposited DP chains, providing molecular dimensions from scanning and transmission electron microscopy and mass-per-length values from quantitative scanning transmission electron microscopy. These results are compared with density values obtained from small-angle X-ray scattering on annealed bulk specimen and with classical envelope density measurements, obtained using hydrostatic weighing or a density gradient column. The samples investigated comprise a series of DPs with side groups of dendritic generations g = 1-8. The key findings are a very large spread of the density values over all samples and methods, and a consistent increase of densities with g over all methods. While this work highlights the advantages and limitations of the applied methods, it does not provide a conclusive answer to the question of which method(s) to use for the determination of densities of individual molecular objects. We are nevertheless confident that these first attempts to answer this challenging question will stimulate more research into this important aspect of polymer and soft matter science.

5.
J Am Chem Soc ; 141(25): 9867-9871, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31244135

RESUMO

Structural elucidation of 2D polymer monolayers proving long-range order is a challenge that limits the pace in which this recent field of polymer chemistry and of synthetic 2D materials develops. To overcome this bottleneck, we here present a method in which tip-enhanced Raman spectroscopy is combined with a random growth crystallization model to obtain global features from local spectroscopic information. Concretely, we prove the nature and determine the conversion number X of the cross-links for two new 2D homopolymers and one (of three) new 2D copolymers. Assuming random and in-plane growth, our model results in crystallinity degrees of 93.1% to 99.7% and mean radii of defect-free crystalline areas of 3-15 nm for conversion numbers of 84% < X < 98%. Thus, we provide strong evidence for the synthetic monolayer 2D materials presented that they qualify as 2D polymers and are therefore perfectly suited for in-depth studies both in a more fundamental direction as well as toward application. This example shows how our method can affect current research on covalent sheets.

6.
Polymers (Basel) ; 11(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091725

RESUMO

This review concerns modeling studies of the fundamental problem of entangled (reptational) homopolymer diffusion in melts and nanocomposite materials in comparison to experiments. In polymer melts, the developed united atom and multibead spring models predict an exponent of the molecular weight dependence to the polymer diffusion very similar to experiments and the tube reptation model. There are rather unexplored parameters that can influence polymer diffusion such as polymer semiflexibility or polydispersity, leading to a different exponent. Models with soft potentials or slip-springs can estimate accurately the tube model predictions in polymer melts enabling us to reach larger length scales and simulate well entangled polymers. However, in polymer nanocomposites, reptational polymer diffusion is more complicated due to nanoparticle fillers size, loading, geometry and polymer-nanoparticle interactions.

7.
Polymers (Basel) ; 11(2)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30960360

RESUMO

We have recently solved the tumbling-snake model for concentrated polymer solutions and entangled melts in the academic case of a monodisperse sample. Here, we extend these studies and provide the stationary solutions of the tumbling-snake model both analytically, for small shear rates, and via Brownian dynamics simulations, for a bidisperse sample over a wide range of shear rates and model parameters. We further show that the tumbling-snake model bears the necessary capacity to compare well with available linear and non-linear rheological data for bidisperse systems. This capacity is added to the already documented ability of the model to accurately predict the shear rheology of monodisperse systems.

8.
ACS Nano ; 13(3): 3466-3473, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30835993

RESUMO

The backbone conformations of individual, unperturbed synthetic macromolecules have so far not been observed directly in spite of their fundamental importance to polymer physics. Here we report the dilute solution conformations of two types of linear dendronized polymers, obtained by cryogenic transmission electron stereography and tomography. The three-dimensional trajectories show that the wormlike chain model fails to adequately describe the scaling of these thick macromolecules already beyond a few nanometers in chain length, in spite of large apparent persistence lengths and long before a signature of self-avoidance appears. This insight is essential for understanding the limitations of polymer physical models, and it motivated us to discuss the advantages and disadvantages of this approach in comparison to the commonly applied scattering techniques.

9.
Phys Chem Chem Phys ; 21(5): 2295-2306, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30328439

RESUMO

The gas-liquid expanded phase transition of a Langmuir monolayer happens at very low surface concentrations which makes this phenomenon extremely expensive to explore in finite three-dimensional (3D) atomistic simulations. Starting with a 3D model reference system of amphiphilic surfactants at a 2D vapor-liquid interface, we apply our recently developed approach (Phys. Chem. Chem. Phys., 2018, 20, 16238) and map the entire system to an effective 2D system of surfactant center-of-masses projected onto the interface plane. The coarse-grained interaction potential obtained via a force-matching scheme from the 3D simulations is then used to predict the 2D gas-liquid phase equilibrium of the corresponding Langmuir monolayer. Monte Carlo simulations in the Gibbs ensemble are performed to calculate areal densities, chemical potentials and surface pressures of the gaseous and liquid coexisting phases within the monolayer. We compare these simulations to the results of a 2D density functional approach based on Weeks-Chandler-Anderson perturbation theory. We furthermore use this approach to determine the density profiles across the equilibrium gas-liquid dividing line and the corresponding line tensions.

10.
Langmuir ; 34(50): 15370-15382, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444370

RESUMO

We investigate the conformation, position, and dynamics of core-shell nanoparticles (CSNPs) composed of a silica core encapsulated in a cross-linked poly( N-isopropylacrylamide) shell at a water-oil interface for a systematic range of core sizes and shell thicknesses. We first present a free-energy model that we use to predict the CSNP wetting behavior at the interface as a function of its geometrical and compositional properties in the bulk phases, which is in good agreement with our experimental data. Remarkably, based on the knowledge of the polymer shell deformability, the equilibrium particle position relative to the interface plane, an often elusive experimental quantity, can be extracted by measuring its radial dimensions after adsorption. For all the systems studied here, the interfacial dimensions are always larger than in bulk and the particle core resides in a configuration, wherein it just touches the interface or is fully immersed in water. Moreover, the stretched shell induces a larger viscous drag at the interface, which appears to depend solely on the interfacial dimensions, irrespective of the portion of the CSNP surface exposed to the two fluids. Our findings indicate that tailoring the architecture of CSNPs can be used to control their properties at the interface, as of interest for applications including emulsion stabilization and nanopatterning.

11.
Soft Matter ; 14(37): 7653-7663, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30175836

RESUMO

Pluronic (PL) block copolymers have been widely used as delivery carriers, molecular templates for porous media, and process additives for affecting rheological behavior. Unlike most surfactant systems, where unimer transforms into micelle with increased surfactant concentration, anomalous large PL aggregates below the critical micelle concentration (CMC) were found throughout four types of PL (F108, F127, F88 and P84). We characterized their structures using dynamic light scattering and small-angle X-ray/neutron scattering. Molecular dynamics simulations suggest that the PPO segments, though weakly hydrophobic interaction (insufficient to form micelles), promote the formation of large aggregates. Addition of acid or base (e.g. citric acid, acetic acid, HCl and NaOH) in F108 solution significantly suppresses the aggregate formation for up to 20 days due to the repulsion force from the attached H3O+ molecules on the EO segment in both PEO and PL and the reduction of CMC through the salting out effect, respectively.


Assuntos
Polietilenoglicóis/química , Propilenoglicóis/química , Água/química , Micelas , Conformação Molecular , Simulação de Dinâmica Molecular , Salinidade , Soluções
12.
Angew Chem Int Ed Engl ; 57(33): 10584-10588, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-29888847

RESUMO

A trifunctional, partially fluorinated anthracene-substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long-range-ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non-contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer. The nc-AFM images highlight the long-range order over areas of at least 300×300 nm2 . As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.

13.
J Chem Phys ; 148(18): 184903, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29764144

RESUMO

The steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to be peculiar in the sense that for entangled polymer melts it monotonically decreases-whereas for concentrated polymer solutions it increases-with increasing strain rate beyond the inverse Rouse time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supplemented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as the polymer concentration decreases, and the model is seen to capture the experimentally observed behavior. Additional refinements may supplement the present model to capture very strong flows. We furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its capacity to improve our microscopic understanding of the rheology of entangled polymer melts and concentrated polymer solutions.

14.
Nanoscale ; 10(9): 4545-4560, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29461551

RESUMO

The PEGylated liposome, composed of an aqueous core and a fluid state lipid bilayer shell, is one of the few Food and Drug Administration (FDA) approved drug delivery platforms. To prevent the absorption of serum proteins, the surface of a liposome is decorated by hydrophilic and bio-compatible polyethylene glycol (PEG) polymers, which can significantly extend the blood circulation time of liposomes. In this work, with the help of dissipative particle dynamics (DPD) simulations, we explore how the tethered PEG polymers will affect the membrane wrapping process of PEGylated liposomes during endocytosis. Specifically, we compare the membrane wrapping process of a PEGylated rigid nanoparticle (NP) with a PEGylated liposome under identical conditions. Due to the mobility of grafted PEG polymers on the liposome's surface, the complete wrapping of a PEGylated liposome can be dramatically delayed and blocked, in comparison with a PEGylated rigid NP. For the first time, we observe the aggregation of PEG polymers in the contact region between a PEGylated liposome and the membrane, which in turn leads to a ligand-free region on the surface of the liposome during endocytosis. Subsequently, the partially wrapped PEGylated liposome can be bounced back to a less wrapped state. Through free energy analysis, we find that the aggregation of PEG polymers during the membrane wrapping process of a PEGylated liposome introduces a dramatic free energy penalty of about ∼800kBT, which is almost twice that of a PEGylated rigid NP. Here kB and T are the Boltzmann constant and temperature, respectively. Such a large energy barrier and the existence of a ligand-free region on the surface of PEGlylated liposomes prevent their membrane wrapping, thereby reducing the chance of internalization by tumor cells. Therefore, our DPD simulation results provide a possible explanation for the inefficient cellular uptake of PEGylated liposomes. In addition, we suggest that by increasing the repulsive interactions between grafted PEG polymers it might be possible to limit their aggregation, and in turn, facilitate the internalization of PEGylated liposomes. The current study provides fundamental insights into the endocytosis of PEGylated liposomes, which could help to design this platform with high efficacy for drug delivery.


Assuntos
Endocitose , Lipossomos/química , Polietilenoglicóis/química , Portadores de Fármacos/química , Bicamadas Lipídicas , Modelos Moleculares , Polímeros
15.
Nanotechnology ; 29(10): 104001, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29311421

RESUMO

Graphene is recognized as an emerging 2D nanomaterial for many applications. Assembly of graphene sheets into 3D structures is an attractive way to enable their macroscopic applications and to preserve the exceptional mechanical and physical properties of their constituents. In this study, we develop a coarse-grained (CG) model for 3D graphene foams (GFs) based on the CG model for a 2D graphene sheet by Ruiz et al (2015 Carbon 82 103-15). We find that the size of graphene sheets plays an important role in both the structural and mechanical properties of 3D GFs. When their size is smaller than 10 nm, the graphene sheets can easily stack together under the influence of van der Waals interactions (vdW). These stacks behave like building blocks and are tightly packed together within 3D GFs, leading to high density, small pore radii, and a large Young's modulus. However, if the sheet sizes exceed 10 nm, they are staggered together with a significant amount of deformation (bending). Therefore, the density of 3D GFs has been dramatically reduced due to the loosely packed graphene sheets, accompanied by large pore radii and a small Young's modulus. Under uniaxial compression, rubber-like stress-strain curves are observed for all 3D GFs. This material characteristic is dominated by the vdW interactions between different graphene layers and slightly affected by the out-of-plane deformation of the graphene sheets. We find a simple scaling law [Formula: see text] between the density ρ and Young's modulus E for a model of 3D GFs. The simulation results reveal structure-property relations of 3D GFs, which can be applied to guide the design of 3D graphene assemblies with exceptional properties.

16.
Polymers (Basel) ; 10(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30960935

RESUMO

We investigate the effect of various spherical nanoparticles in a polymer matrix on dispersion, chain dimensions and entanglements for ionic nanocomposites at dilute and high nanoparticle loading by means of molecular dynamics simulations. The nanoparticle dispersion can be achieved in oligomer matrices due to the presence of electrostatic interactions. We show that the overall configuration of ionic oligomer chains, as characterized by their radii of gyration, can be perturbed at dilute nanoparticle loading by the presence of charged nanoparticles. In addition, the nanoparticle's diffusivity is reduced due to the electrostatic interactions, in comparison to conventional nanocomposites where the electrostatic interaction is absent. The charged nanoparticles are found to move by a hopping mechanism.

17.
Polymers (Basel) ; 10(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966364

RESUMO

We have recently solved the tumbling-snake model for concentrated polymer solutions and entangled melts in the presence of both steady-state and transient shear and uniaxial elongational flows, supplemented by a variable link tension coefficient. Here, we provide the transient and stationary solutions of the tumbling-snake model under biaxial elongation both analytically, for small and large elongation rates, and via Brownian dynamics simulations, for the case of planar elongational flow over a wide range of rates, times, and the model parameters. We show that both the steady-state and transient first planar viscosity predictions are similar to their uniaxial counterparts, in accord with recent experimental data. The second planar viscosity seems to behave in all aspects similarly to the shear viscosity, if shear rate is replaced by elongation rate.

18.
Soft Matter ; 13(45): 8565-8578, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29099134

RESUMO

We discuss the design of state-of-the-art numerical methods for molecular dynamics, focusing on the demands of soft matter simulation, where the purposes include sampling and dynamics calculations both in and out of equilibrium. We discuss the characteristics of different algorithms, including their essential conservation properties, the convergence of averages, and the accuracy of numerical discretizations. Formulations of the equations of motion which are suited to both equilibrium and nonequilibrium simulation include Langevin dynamics, dissipative particle dynamics (DPD), and the more recently proposed "pairwise adaptive Langevin" (PAdL) method, which, like DPD but unlike Langevin dynamics, conserves momentum and better matches the relaxation rate of orientational degrees of freedom. PAdL is easy to code and suitable for a variety of problems in nonequilibrium soft matter modeling; our simulations of polymer melts indicate that this method can also provide dramatic improvements in computational efficiency. Moreover we show that PAdL gives excellent control of the relaxation rate to equilibrium. In the nonequilibrium setting, we further demonstrate that while PAdL allows the recovery of accurate shear viscosities at higher shear rates than are possible using the DPD method at identical timestep, it also outperforms Langevin dynamics in terms of stability and accuracy at higher shear rates.

19.
J Chem Phys ; 147(17): 174903, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29117693

RESUMO

The authors of the present study have recently presented evidence that the tumbling-snake model for polymeric systems has the necessary capacity to predict the appearance of pronounced undershoots in the time-dependent shear viscosity as well as an absence of equally pronounced undershoots in the transient two normal stress coefficients. The undershoots were found to appear due to the tumbling behavior of the director u when a rotational Brownian diffusion term is considered within the equation of motion of polymer segments, and a theoretical basis concerning the use of a link tension coefficient given through the nematic order parameter had been provided. The current work elaborates on the quantitative predictions of the tumbling-snake model to demonstrate its capacity to predict undershoots in the time-dependent shear viscosity. These predictions are shown to compare favorably with experimental rheological data for both polymer melts and solutions, help us to clarify the microscopic origin of the observed phenomena, and demonstrate in detail why a constant link tension coefficient has to be abandoned.

20.
J Chem Phys ; 146(16): 161101, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456214

RESUMO

Our experimental data unambiguously show (i) a damping behavior (the appearance of an undershoot following the overshoot) in the transient shear viscosity of a concentrated polymeric solution, and (ii) the absence of a corresponding behavior in the transient normal stress coefficients. Both trends are shown to be quantitatively captured by the bead-link chain kinetic theory for concentrated polymer solutions and entangled polymer melts proposed by Curtiss and Bird, supplemented by a non-constant link tension coefficient that we relate to the nematic order parameter. The observed phenomena are attributed to the tumbling behavior of the links, triggered by rotational fluctuations, on top of reptation. Using model parameters deduced from stationary data, we calculate the transient behavior of the stress tensor for this "tumbling-snake" model after startup of shear flow efficiently via simple Brownian dynamics. The unaltered method is capable of handling arbitrary homogeneous flows and has the promising capacity to improve our understanding of the transient behavior of concentrated polymer solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA