Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Clin Infect Dis ; 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31565750

RESUMO

BACKGROUND: The conserved, immuno-subdominant influenza virus hemagglutinin (HA) stalk region is a potential universal group-specific influenza virus vaccine epitope. We analysed antibody responses to H1 hemagglutinin stalk-domain (H1/stalk) following trivalent influenza inactivated vaccine (IIV3) vaccination in pregnant women, and association with protection against influenza virus illness. METHODS: One-hundred and forty-five HIV-uninfected (68 IIV3 and 77 placebo-recipients) and 140 HIV-infected (72 IIV3 and 68 placebo-recipients) pregnant women were independently randomised in placebo-controlled efficacy trials of IIV3. Plasma samples were tested for H1/stalkIgG and hemagglutination-inhibition (HAI) antibodies pre-vaccination and one-month post-vaccination. Women had weekly surveillance for influenza illness, confirmed by polymerase chain reaction. FINDINGS: Increases in H1/stalk IgG (and HAI) antibody levels were elicited post-IIV3; with responses being higher in HIV-uninfected than HIV-infected women. Among HIV-uninfected vaccinees, there was no correlation (post-vaccination) between H1/stalk and HAI antibody responses, whereas a strong correlation was observed in HIV-infected vaccinees. The H1/stalk IgG concentration was lower among women developing A/H1N1-illness (85.3 arbitrary units (AU)/ml) than those without A/H1N1-illness (219.6 AU/ml; p=0.001). H1/stalk IgG concentration ≥215 AU/ml was associated with 90% lower odds (odds ratio=0.09; p=0.005) of A/H1N1-illness. Also, H1/stalk IgG were significantly lower among women with influenza B-illness (93.9 AU/ml) than their counter-parts (215.5 AU/ml; p=0.04), however, no association was observed after adjusting for HAI titers. CONCLUSIONS: H1/stalk IgG concentration was associated with lower odds for A/H1N1 influenza virus illness, indicating its potential as an epitope for a universal vaccine against Group-1 influenza virus.

2.
Science ; 366(6464): 499-504, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649200

RESUMO

Better vaccines against influenza virus are urgently needed to provide broader protection against diverse strains, subtypes, and types. Such efforts are assisted by the identification of novel broadly neutralizing epitopes targeted by protective antibodies. Influenza vaccine development has largely focused on the hemagglutinin, but the other major surface antigen, the neuraminidase, has reemerged as a potential target for universal vaccines. We describe three human monoclonal antibodies isolated from an H3N2-infected donor that bind with exceptional breadth to multiple different influenza A and B virus neuraminidases. These antibodies neutralize the virus, mediate effector functions, are broadly protective in vivo, and inhibit neuraminidase activity by directly binding to the active site. Structural and functional characterization of these antibodies will inform the development of neuraminidase-based universal vaccines against influenza virus.

3.
Lancet Infect Dis ; 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31630990

RESUMO

BACKGROUND: Influenza viruses cause substantial annual morbidity and mortality globally. Current vaccines protect against influenza only when well matched to the circulating strains. However, antigenic drift can cause considerable mismatches between vaccine and circulating strains, substantially reducing vaccine effectiveness. Moreover, current seasonal vaccines are ineffective against pandemic influenza, and production of a vaccine matched to a newly emerging virus strain takes months. Therefore, there is an unmet medical need for a broadly protective influenza virus vaccine. We aimed to test the ability of chimeric H1 haemagglutinin-based universal influenza virus vaccine candidates to induce broadly cross-reactive antibodies targeting the stalk domain of group 1 haemagglutinin-expressing influenza viruses. METHODS: We did a randomised, observer-blinded, phase 1 study in healthy adults in two centres in the USA. Participants were randomly assigned to one of three prime-boost, chimeric haemagglutinin-based vaccine regimens or one of two placebo groups. The vaccine regimens included a chimeric H8/1, intranasal, live-attenuated vaccine on day 1 followed by a non-adjuvanted, chimeric H5/1, intramuscular, inactivated vaccine on day 85; the same regimen but with the inactivated vaccine being adjuvanted with AS03; and an AS03-adjuvanted, chimeric H8/1, intramuscular, inactivated vaccine followed by an AS03-adjuvanted, chimeric H5/1, intramuscular, inactivated vaccine. In this planned interim analysis, the primary endpoints of reactogenicity and safety were assessed by blinded study group. We also assessed anti-H1 haemagglutinin stalk, anti-H2, anti-H9, and anti-H18 IgG antibody titres and plasmablast and memory B-cell responses in peripheral blood. This trial is registered with ClinicalTrials.gov, number NCT03300050. FINDINGS: Between Oct 10, 2017, and Nov 27, 2017, 65 participants were enrolled and randomly assigned. The adjuvanted inactivated vaccine, but not the live-attenuated vaccine, induced a substantial serum IgG antibody response after the prime immunisation, with a seven times increase in anti-H1 stalk antibody titres on day 29. After boost immunisation, all vaccine regimens induced detectable anti-H1 stalk antibody (2·2-5·6 times induction over baseline), cross-reactive serum IgG antibody, and peripheral blood plasmablast responses. An unsolicited adverse event was reported for 29 (48%) of 61 participants. Solicited local adverse events were reported in 12 (48%) of 25 participants following prime vaccination with intramuscular study product or placebo, in 12 (33%) of 36 after prime immunisation with intranasal study product or placebo, and in 18 (32%) of 56 following booster doses of study product or placebo. Solicited systemic adverse events were reported in 14 (56%) of 25 after prime immunisation with intramuscular study product or placebo, in 22 (61%) of 36 after immunisation with intranasal study product or placebo, and in 21 (38%) of 56 after booster doses of study product or placebo. Disaggregated safety data were not available at the time of this interim analysis. INTERPRETATION: The tested chimeric haemagglutinin-based, universal influenza virus vaccine regimens elicited cross-reactive serum IgG antibodies that targeted the conserved haemagglutinin stalk domain. This is the first proof-of-principle study to show that high anti-stalk titres can be induced by a rationally designed vaccine in humans and opens up avenues for further development of universal influenza virus vaccines. On the basis of the blinded study group, the vaccine regimens were tolerable and no safety concerns were observed. FUNDING: Bill & Melinda Gates Foundation.

4.
Front Immunol ; 10: 2005, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497029

RESUMO

Seasonal influenza viruses cause significant morbidity and mortality in the global population every year. Although seasonal vaccination limits disease, mismatches between the circulating strain and the vaccine strain can severely impair vaccine effectiveness. Because of this, there is an urgent need for a universal vaccine that induces broad protection against drifted seasonal and emerging pandemic influenza viruses. Targeting the conserved stalk region of the influenza virus hemagglutinin (HA), the major glycoprotein on the surface of the virus, results in the production of broadly protective antibody responses. Furthermore, replication deficient viral vectors based on Chimpanzee Adenovirus Oxford 1 (ChAdOx1) and modified vaccinia Ankara (MVA) virus expressing the influenza virus internal antigens, the nucleoprotein (NP) and matrix 1 (M1) protein, can induce strong heterosubtypic influenza virus-specific T cell responses in vaccinated individuals. Here, we combine these two platforms to evaluate the efficacy of a viral vectored vaccination regimen in protecting ferrets from H3N2 influenza virus infection. We observed that viral vectored vaccines expressing both stalk-targeting, chimeric HA constructs, and the NP+M1 fusion protein, in a prime-boost regimen resulted in the production of antibodies toward group 2 HAs, the HA stalk, NP and M1, as well as in induction of influenza virus-specific-IFNγ responses. The immune response induced by this vaccination regime ultimately reduced viral titers in the respiratory tract of influenza virus infected ferrets. Overall, these results improve our understanding of vaccination platforms capable of harnessing both cellular and humoral immunity with the goal of developing a universal influenza virus vaccine.

5.
J Virol ; 93(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31434733

RESUMO

Vaccination is the best measure of protection against influenza virus infection. Vaccine-induced antibody responses target mainly the hemagglutinin (HA) surface glycoprotein, composed of the head and the stalk domains. Recently two novel vaccine platforms have been developed for seasonal influenza vaccination: a recombinant HA vaccine produced in insect cells (Flublok) and Flucelvax, prepared from virions produced in mammalian cells. In order to compare the fine specificity of the antibodies induced by these two novel vaccine platforms, we characterized 42 Flublok-induced monoclonal antibodies (MAbs) and 38 Flucelvax-induced MAbs for avidity, cross-reactivity, and any selectivity toward the head versus the stalk domain. These studies revealed that Flublok induced a greater proportion of MAbs targeting epitopes near the receptor-binding domain on HA head (hemagglutinin inhibition-positive MAbs) than Flucelvax, while the two vaccines induced similar low frequencies of stalk-reactive MAbs. Finally, mice immunized with Flublok and Flucelvax also induced similar frequencies of stalk-reactive antibody-secreting cells, showing that HA head immunodominance is independent of immune memory bias. Collectively, our results suggest that these vaccine formulations are similarly immunogenic but differ in the preferences of the elicited antibodies toward the receptor-binding domain on the HA head.IMPORTANCE There are ongoing efforts to increase the efficacy of influenza vaccines and to promote production strategies that can rapidly respond to newly emerging viruses. It is important to understand if current alternative seasonal vaccines, such as Flublok and Flucelvax, that use alternate production strategies can induce protective influenza-specific antibodies and to evaluate what type of epitopes are targeted by distinct vaccine formulations.

6.
J Virol ; 93(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31375573

RESUMO

Influenza viruses express two surface glycoproteins, the hemagglutinin (HA) and the neuraminidase (NA). Anti-NA antibodies protect from lethal influenza virus challenge in the mouse model and correlate inversely with virus shedding and symptoms in humans. Consequently, the NA is a promising target for influenza virus vaccine design. Current seasonal vaccines, however, poorly induce anti-NA antibodies, partly because of the immunodominance of the HA over the NA when the two glycoproteins are closely associated. To address this issue, here we investigated whether extending the stalk domain of the NA could render it more immunogenic on virus particles. Two recombinant influenza viruses based on the H1N1 strain A/Puerto Rico/8/1934 (PR8) were rescued with NA stalk domains extended by 15 or 30 amino acids. Formalin-inactivated viruses expressing wild-type NA or the stalk-extended NA variants were used to vaccinate mice. The virus with the 30-amino-acid stalk extension induced significantly higher anti-NA IgG responses (characterized by increased in vitro antibody-dependent cellular cytotoxicity [ADCC] activity) than the wild-type PR8 virus, while anti-HA IgG levels were unaffected. Similarly, extending the stalk domain of the NA of a recent H3N2 virus enhanced the induction of anti-NA IgGs in mice. On the basis of these results, we hypothesize that the subdominance of the NA can be modulated if the protein is modified such that its height surpasses that of the HA on the viral membrane. Extending the stalk domain of NA may help to enhance its immunogenicity in influenza virus vaccines without compromising antibody responses to HA.IMPORTANCE The efficacy of influenza virus vaccines could be improved by enhancing the immunogenicity of the NA protein. One of the reasons for its poor immunogenicity is the immunodominance of the HA over the NA in many seasonal influenza virus vaccines. Here we demonstrate that, in the mouse model, extending the stalk domain of the NA protein can enhance its immunogenicity on virus particles and overcome the immunodominance of the HA without affecting antibody responses to the HA. The antibody repertoire is broadened by the extended NA and includes additional ADCC-active antibodies. Our findings may assist in the efforts toward more effective influenza virus vaccines.

7.
Nat Microbiol ; 4(12): 2216-2225, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31406333

RESUMO

A(H3N2) virus predominated recent influenza seasons, which has resulted in the rigorous investigation of haemagglutinin, but whether neuraminidase (NA) has undergone antigenic change and contributed to the predominance of A(H3N2) virus is unknown. Here, we show that the NA of the circulating A(H3N2) viruses has experienced significant antigenic drift since 2016 compared with the A/Hong Kong/4801/2014 vaccine strain. This antigenic drift was mainly caused by amino acid mutations at NA residues 245, 247 (S245N/S247T; introducing an N-linked glycosylation site at residue 245) and 468. As a result, the binding of the NA of A(H3N2) virus by some human monoclonal antibodies, including those that have broad reactivity to the NA of the 1957 A(H2N2) and 1968 A(H3N2) reference pandemic viruses as well as contemporary A(H3N2) strains, was reduced or abolished. This antigenic drift also reduced NA-antibody-based protection against in vivo virus challenge. X-ray crystallography showed that the glycosylation site at residue 245 is within a conserved epitope that overlaps the NA active site, explaining why it impacts antibody binding. Our findings suggest that NA antigenic drift impacts protection against influenza virus infection, thus highlighting the importance of including NA antigenicity for consideration in the optimization of influenza vaccines.

8.
Vaccine ; 37(37): 5567-5577, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31399277

RESUMO

Seasonal influenza virus infections cause significant morbidity and mortality every year. Annual influenza virus vaccines are effective but only when well matched with circulating strains. Therefore, there is an urgent need for better vaccines that induce broad protection against drifted seasonal and emerging pandemic influenza viruses. One approach to design such vaccines is based on targeting conserved regions of the influenza virus hemagglutinin. Sequential vaccination with chimeric hemagglutinin constructs can refocus antibody responses towards the conserved immunosubdominant stalk domain of the hemagglutinin, rather than the variable immunodominant head. A complementary approach for a universal influenza A virus vaccine is to induce T-cell responses to conserved internal influenza virus antigens. For this purpose, replication deficient recombinant viral vectors based on Chimpanzee Adenovirus Oxford 1 and Modified Vaccinia Ankara virus are used to express the viral nucleoprotein and the matrix protein 1. In this study, we combined these two strategies and evaluated the efficacy of viral vectors expressing both chimeric hemagglutinin and nucleoprotein plus matrix protein 1 in a mouse model against challenge with group 2 influenza viruses including H3N2, H7N9 and H10N8. We found that vectored vaccines expressing both sets of antigens provided enhanced protection against H3N2 virus challenge when compared to vaccination with viral vectors expressing only one set of antigens. Vaccine induced antibody responses against divergent group 2 hemagglutinins, nucleoprotein and matrix protein 1 as well as robust T-cell responses to the nucleoprotein and matrix protein 1 were detected. Of note, it was observed that while antibodies to the H3 stalk were already boosted to high levels after two vaccinations with chimeric hemagglutinins (cHAs), three exposures were required to induce strong reactivity across subtypes. Overall, these results show that a combinations of different universal influenza virus vaccine strategies can induce broad antibody and T-cell responses and can provide increased protection against influenza.

9.
Emerg Microbes Infect ; 8(1): 1017-1026, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287780

RESUMO

Host switch events of influenza A viruses (IAVs) continuously pose a zoonotic threat to humans. In 2013, swine-origin H1N1 IAVs emerged in dogs soon after they were detected in swine in the Guangxi province of China. This host switch was followed by multiple reassortment events between these H1N1 and previously circulating H3N2 canine IAVs (IAVs-C) in dogs. To evaluate the phenotype of these newly identified viruses, we characterized three swine-origin H1N1 IAVs-C and one reassortant H1N1 IAV-C. We found that H1N1 IAVs-C predominantly bound to human-type receptors, efficiently transmitted via direct contact in guinea pigs and replicated in human lung cells. Moreover, the swine-origin H1N1 IAVs-C were lethal in mice and were transmissible by respiratory droplets in guinea pigs. Importantly, sporadic human infections with these viruses have been detected, and preexisting immunity in humans might not be sufficient to prevent infections with these new viruses. Our results show the potential of H1N1 IAVs-C to infect and transmit in humans, suggesting that these viruses should be closely monitored in the future.


Assuntos
Doenças do Cão/virologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/virologia , Animais , China , Doenças do Cão/mortalidade , Cães , Feminino , Cobaias , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/mortalidade , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Vírus Reordenados/patogenicidade , Suínos , Doenças dos Suínos/mortalidade , Virulência
10.
Scand J Immunol ; 90(4): e12801, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31269273

RESUMO

Influenza virus is a major respiratory pathogen, and vaccination is the main method of prophylaxis. In 2012, the trivalent live attenuated influenza vaccine (LAIV) was licensed in Europe for use in children. Vaccine-induced antibodies directed against the main viral surface glycoproteins, haemagglutinin (HA) and neuraminidase (NA) play important roles in limiting virus infection. The objective of this study was to dissect the influenza-specific antibody responses in children and adults, and T cell responses in children induced after LAIV immunization to the A/H1N1 virus. Blood samples were collected pre- and at 28 and 56 days post-vaccination from 20 children and 20 adults. No increase in micro-neutralization (MN) antibodies against A/H1N1 was observed after vaccination. A/H1N1 stalk-specific neutralizing and NA-inhibiting (NI) antibodies were boosted in children after LAIV. Interferon γ-producing T cells increased significantly in children, and antibody-dependent cellular-mediated cytotoxic (ADCC) cell activity increased slightly in children after vaccination, although this change was not significant. The results indicate that the NI assay is more sensitive to qualitative changes in serum antibodies after LAIV. There was a considerable difference in the immune response in children and adults after vaccination, which may be related to priming and previous influenza history. Our findings warrant further studies for evaluating LAIV vaccination immunogenicity.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Vacinas Atenuadas/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Criança , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Imunidade Humoral , Masculino , Vacinação
11.
Clin Infect Dis ; 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300819

RESUMO

BACKGROUND: Influenza causes a substantial burden worldwide, and current seasonal influenza vaccine has suboptimal effectiveness. To develop better, more broadly protective vaccines, a more thorough understanding is needed of how antibodies that target the influenza virus surface antigens, hemagglutinin (HA; including head and stalk regions), and neuraminidase (NA), impact influenza illness and virus transmission. METHODS: We used a case-ascertained, community-based study of household influenza virus transmission set in Managua, Nicaragua. Using data from 170 RT-PCR-confirmed influenza virus A(H1N1)pdm infections and 45 household members with serologically-confirmed infection, we examined the association of pre-existing NA, hemagglutination inhibiting (HAI), and HA stalk antibody levels and influenza viral shedding and disease duration using accelerated failure time (AFT) models. RESULTS: Among RT-PCR-confirmed infections in adults, pre-existing anti-NA antibody levels of ≥40 were associated with a 69% (95%CI: 34%, 85%) shortened shedding duration (mean: 1.0 vs 3.2 days). NA antibody levels of ≥80 were associated with further shortened shedding and significantly shortened symptom duration (ILI: 82%, 95%CI: 39%, 95%). Among RT-PCR-confirmed infections in children, HAI titers of ≥1:20 were associated with a 32% (95%CI: 13%, 47%) shortened shedding duration (mean: 3.9 vs 6.0 days). CONCLUSIONS: Our results suggest that anti-NA antibodies play a large role in reducing influenza illness duration in adults and may impact transmission, most clearly among adults. Neuraminidase should be considered as an additional target in next-generation influenza virus vaccine development.

12.
Nat Med ; 25(6): 962-967, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31160818

RESUMO

Influenza viruses remain a severe threat to human health, causing up to 650,000 deaths annually1,2. Seasonal influenza virus vaccines can prevent infection, but are rendered ineffective by antigenic drift. To provide improved protection from infection, novel influenza virus vaccines that target the conserved epitopes of influenza viruses, specifically those in the hemagglutinin stalk and neuraminidase, are currently being developed3. Antibodies against the hemagglutinin stalk confer protection in animal studies4-6. However, no data exist on natural infections in humans, and these antibodies do not show activity in the hemagglutination inhibition assay, the hemagglutination inhibition titer being the current correlate of protection against influenza virus infection7-9. While previous studies have investigated the protective effect of cellular immune responses and neuraminidase-inhibiting antibodies, additional serological correlates of protection from infection could aid the development of broadly protective or universal influenza virus vaccines10-13. To address this gap, we performed a household transmission study to identify alternative correlates of protection from infection and disease in naturally exposed individuals. Using this study, we determined 50% protective titers and levels for hemagglutination inhibition, full-length hemagglutinin, neuraminidase and hemagglutinin stalk-specific antibodies. Further, we found that hemagglutinin stalk antibodies independently correlated with protection from influenza virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Adolescente , Adulto , Idoso , Anticorpos Antivirais/sangue , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Lactente , Recém-Nascido , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Nicarágua/epidemiologia , Pandemias/prevenção & controle , Adulto Jovem
13.
MBio ; 10(3)2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113896

RESUMO

Despite efforts to control influenza virus infection and transmission, influenza viruses still cause significant morbidity and mortality in the global human population each year. Most of the current vaccines target the immunodominant hemagglutinin surface glycoprotein of the virus. However, reduced severity of disease and viral shedding have also been linked to antibodies targeting the second viral surface glycoprotein, the neuraminidase. Importantly, antineuraminidase immunity was shown to be relatively broad, in contrast to vaccine-induced antibodies to the hemagglutinin head domain. In this study, we assessed recombinant neuraminidase protein vaccination for its ability to prevent or limit virus transmission. We vaccinated guinea pigs either intramuscularly or intranasally with a recombinant influenza B virus neuraminidase to assess whether neuraminidase vaccination via these routes could prevent transmission of the homologous virus to a naive recipient. Guinea pigs vaccinated with neuraminidase showed reduced virus titers; however, only vaccination via the intranasal route fully prevented virus transmission to naive animals. We found high levels of antineuraminidase antibodies capable of inhibiting neuraminidase enzymatic activity in the nasal washes of intranasally vaccinated animals, which may explain the observed differences in transmission. We also determined that mucosal immunity to neuraminidase impaired the transmission efficiency of a heterologous influenza B virus, although to a lesser extent. Finally, we found that neuraminidase-vaccinated animals were still susceptible to infection via the airborne and contact transmission routes. However, significantly lower virus titers were detected in these vaccinated recipients. In summary, our data suggest that supplementing vaccine formulations with neuraminidase and vaccinating via the intranasal route may broadly prevent transmission of influenza B viruses.IMPORTANCE Recently, the protective effect of anti-neuraminidase immunity has been highlighted by several studies in humans and animal models. However, so far the role that anti-neuraminidase immunity plays in inhibition of virus transmission has not been explored. In addition, neuraminidase has been ignored as an antigen for influenza virus vaccines. We show here that neuraminidase-based vaccines can inhibit the transmission of influenza virus. Therefore, neuraminidase should be considered as an antigen for improved influenza virus vaccines that not only protect individuals from disease but also inhibit further spread of the virus in the population.

14.
Front Immunol ; 10: 756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105689

RESUMO

Due to continuous antigenic drift and occasional antigenic shift, influenza viruses escape from human adaptive immunity resulting in significant morbidity and mortality in humans. Therefore, to avoid the need for annual reformulation and readministration of seasonal influenza virus vaccines, we are developing a novel chimeric hemagglutinin (cHA)-based universal influenza virus vaccine, which is comprised of sequential immunization with antigens containing a conserved stalk domain derived from a circulating pandemic H1N1 strain in combination with "exotic" head domains. Here, we show that this prime-boost sequential immunization strategy redirects antibody responses toward the conserved stalk region. We compared the vaccine efficacy elicited by distinct vaccination approaches in the preclinical ferret model of influenza. All ferrets immunized with cHA-based vaccines developed stalk-specific and broadly cross-reactive antibody responses. Two consecutive vaccinations with live-attenuated influenza viruses (LAIV-LAIV) conferred superior protection against pH1N1 and H6N1 challenge infection. Sequential immunization with LAIV followed by inactivated influenza vaccine (LAIV-IIV regimen) also induced robust antibody responses. Importantly, the LAIV-LAIV immunization regimen also induced HA stalk-specific CD4+IFN-γ+ and CD8+IFN-γ+ effector T cell responses in peripheral blood that were recalled by pH1N1 viral challenge. The findings from this preclinical study suggest that an LAIV-LAIV vaccination regimen would be more efficient in providing broadly protective immunity against influenza virus infection as compared to other approaches tested here.

15.
Trends Immunol ; 40(6): 467-469, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31072687

RESUMO

Following the recent Zika virus (ZIKV) outbreak in the Americas, a major question that has arisen is how dengue virus (DENV) immunity impacts Zika virus infection and disease. A recent study (Rodriguez-Barraquer, I. et al. Science 2019;363:607-610) shows that DENV immunity is, for the most part, protective against ZIKV, but exceptions may exist.

16.
Sci Immunol ; 4(34)2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004012

RESUMO

Induction of an antibody response capable of recognizing highly diverse strains is a major obstacle to the development of vaccines for viruses such as HIV and influenza. Here, we report the dynamics of B cell expansion and evolution at the single-cell level after vaccination with a replication-competent adenovirus type 4 recombinant virus expressing influenza H5 hemagglutinin. Fluorescent H1 or H5 probes were used to quantitate and isolate peripheral blood B cells and their antigen receptors. We observed increases in H5-specific antibody somatic hypermutation and potency for several months beyond the period of active viral replication that was not detectable at the serum level. Individual broad and potent antibodies could be isolated, including one stem-specific antibody that is part of a new multidonor class. These results demonstrate prolonged evolution of the B cell response for months after vaccination and should be considered in efforts to evaluate or boost vaccine-induced immunity.

17.
Immunohorizons ; 3(4): 133-148, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31032479

RESUMO

The high variation of the influenza virus hemagglutinin (HA), particularly of its immunodominant head epitopes, makes it necessary to reformulate seasonal influenza virus vaccines every year. Novel influenza virus vaccines that redirect the immune response toward conserved epitopes of the HA stalk domain should afford broad and durable protection. Sequential immunization with chimeric HAs (cHAs) that express the same conserved HA stalk and distinct exotic HA heads has been shown to elicit high levels of broadly cross-reactive Abs. In the current mouse immunization studies, we tested this strategy using inactivated split virion cHA influenza virus vaccines (IIV) without adjuvant or adjuvanted with AS01 or AS03 to measure the impact of adjuvant on the Ab response. The vaccines elicited high levels of cross-reactive Abs that showed activity in an Ab-dependent, cell-mediated cytotoxicity reporter assay and were protective in a mouse viral challenge model after serum transfer. In addition, T cell responses to adjuvanted IIV were compared with responses to a cHA-expressing live attenuated influenza virus vaccine (LAIV). A strong but transient induction of Ag-specific T cells was observed in the spleens of mice vaccinated with LAIV. Interestingly, IIV also induced T cells, which were successfully recalled upon viral challenge. Groups that received AS01-adjuvanted IIV or LAIV 4 wk before the challenge showed the lowest level of viral replication (i.e., the highest level of protection). These studies provide evidence that broadly cross-reactive Abs elicited by cHA vaccination demonstrate Fc-mediated activity. In addition, cHA vaccination induced Ag-specific cellular responses that can contribute to protection upon infection.

18.
J Virol ; 93(12)2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30944178

RESUMO

Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. However, protection by current seasonal vaccines is suboptimal due to the antigenic changes of the circulating strains. In this study, we report a novel universal influenza B virus vaccination strategy based on "mosaic" hemagglutinins. We generated mosaic B hemagglutinins by replacing the major antigenic sites of the type B hemagglutinin with corresponding sequences from exotic influenza A hemagglutinins and expressed them as soluble trimeric proteins. Sequential vaccination with recombinant mosaic B hemagglutinin proteins conferred cross-protection against both homologous and heterologous influenza B virus strains in the mouse model. Of note, we rescued recombinant influenza B viruses expressing mosaic B hemagglutinins, which could serve as the basis for a universal influenza B virus vaccine.IMPORTANCE This work reports a universal influenza B virus vaccination strategy based on focusing antibody responses to conserved head and stalk epitopes of the hemagglutinin. Recombinant mosaic influenza B hemagglutinin proteins and recombinant viruses have been generated as novel vaccine candidates. This vaccine strategy provided broad cross-protection in the mouse model. Our findings will inform and drive development toward a more effective influenza B virus vaccine.

19.
MBio ; 10(2)2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940710

RESUMO

Zika virus is a mosquito-borne flavivirus which can cause severe disease in humans, including microcephaly and other congenital malformations in newborns and Guillain-Barré syndrome in adults. There are currently no approved prophylactics or therapeutics for Zika virus; the development of a safe and effective vaccine is an urgent priority. Preclinical studies suggest that the envelope glycoprotein can elicit potently neutralizing antibodies. However, such antibodies are implicated in the phenomenon of antibody-dependent enhancement of disease. We have previously shown that monoclonal antibodies targeting the Zika virus nonstructural NS1 protein are protective without inducing antibody-dependent enhancement of disease. Here, we investigated whether the NS1 protein itself is a viable vaccine target. Wild-type mice were vaccinated with an NS1-expressing DNA plasmid followed by two adjuvanted protein boosters, which elicited high antibody titers. Passive transfer of the immune sera was able to significantly protect STAT2 knockout mice against lethal challenge by Zika virus. In addition, long-lasting NS1-specific IgG responses were detected in serum samples from patients in either the acute or the convalescent phase of Zika virus infection. These NS1-specific antibodies were able to functionally engage Fcγ receptors. In contrast, envelope-specific antibodies did not activate Fc-mediated effector functions on infected cells. Our data suggest that the Zika virus NS1 protein, which is expressed on infected cells, is critical for Fc-dependent cell-mediated immunity. The present study demonstrates that the Zika virus NS1 protein is highly immunogenic and can elicit protective antibodies, underscoring its potential for an effective Zika virus vaccine.IMPORTANCE Zika virus is a global public health threat that causes microcephaly and congenital malformations in newborns and Guillain-Barré syndrome in adults. Currently, no vaccines or treatments are available. While antibodies targeting the envelope glycoprotein can neutralize virus, they carry the risk of antibody-dependent enhancement of disease (ADE). In contrast, antibodies generated against the NS1 protein can be protective without eliciting ADE. The present study demonstrates the effectiveness of an NS1-based vaccine in eliciting high titers of protective antibodies against Zika virus disease in a mouse model. Sera generated by this vaccine can elicit Fc-mediated effector functions against Zika virus-infected cells. Lastly, we provide human data suggesting that the antibody response against the Zika virus NS1 protein is long-lasting and functionally active. Overall, our work will inform the development of a safe and effective Zika virus vaccine.


Assuntos
Anticorpos Antivirais/sangue , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imunidade Celular , Esquemas de Imunização , Imunização Passiva , Imunoglobulina G/sangue , Camundongos , Camundongos Knockout , Receptores Fc/metabolismo , Análise de Sobrevida , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/imunologia , Vacinas Virais/administração & dosagem
20.
Emerg Microbes Infect ; 8(1): 155-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866770

RESUMO

Influenza viruses of the H4 subtype are widespread in wild birds, circulate in domestic poultry, readily infect mammals, and tolerate the insertion of a polybasic cleavage site. In addition, serological evidence suggests that humans working with poultry are exposed to these viruses. While H4 viruses are not of immediate pandemic concern, there is a lack of knowledge regarding their antigenicity. In order to study viruses of the H4 subtype, we generated and characterized a panel of antibodies that bind a wide variety of H4 hemagglutinins from avian and swine isolates of both the Eurasian and North American lineage. We further characterized these antibodies using novel recombinant H4N6 viruses that were found to be lethal in DBA/2J mice. Non-neutralizing antibodies, which had activity in an antibody dependent cell-mediated cytotoxicity reporter assay in vitro, protected mice against challenge in vivo, highlighting the importance of effector functions. Our data suggest a high degree of antigenic conservation of the H4 hemagglutinin.


Assuntos
Anticorpos Neutralizantes/administração & dosagem , Aves/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Suínos/virologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/imunologia , Aves/imunologia , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidade , Camundongos , Camundongos Endogâmicos DBA , Infecções por Orthomyxoviridae/imunologia , Suínos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA