Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Hum Genet ; 105(1): 15-28, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31178129

RESUMO

Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10-7). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r2 > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10-4) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.

3.
Br J Nutr ; 122(3): 309-321, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31182174

RESUMO

Animal sterols, plant sterols and bile acids in stool samples have been suggested as biomarkers of dietary intake. It is still unknown whether they also reflect long-term habitual dietary intake and can be used in aetiological research. In a subgroup of the Cooperative Health Research in the Augsburg Region (KORA FF4) study, habitual dietary intake was estimated based on repeated 24-h food list and a FFQ. Stool samples were collected according to a standard operating procedure and those meeting the quality criteria were extracted and analysed by means of a metabolomics technique. The present study is based on data from 513 men and 495 women with a mean age of 60 and 58 years, respectively, for which faecal animal and plant sterols and bile acids concentrations and dietary intake data were available. In adjusted regression models, the associations between food intake and log-normalised metabolite concentrations were analysed. Bonferroni correction was used to account for multiple testing. In this population-based sample, associations between habitual dietary intake and faecal concentrations of animal sterols were identified, while the impact of usual diet on bile acids was limited. A habitual diet high in 'fruits' and 'nuts and seeds' is associated with lower animal faecal sterols concentrations, whereas a diet high in 'meat and meat products' is positively related to faecal concentrations of animal sterols. A positive association between glycocholate and fruit consumption was found. Further studies are necessary for evaluation of faecal animal sterols as biomarkers of diet. The findings need to be confirmed in other populations with diverse dietary habits.

4.
Diabetes ; 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30396904

RESUMO

Recent studies suggest that insulin-like growth factor binding protein-2 (IGFBP-2) may protect against type 2 diabetes but population-based human studies are scarce. We aimed to investigate the prospective association of circulating IGFBP-2 concentrations and of differential methylation in the IGFBP-2 gene with type 2 diabetes risk.Within the EPIC-Potsdam cohort (n=27,548), circulating IGFBP-2 concentration was assessed in a nested case-cohort (random subcohort, n=2500, all incident type 2 diabetes cases, n=820). A nested 1:1 matched case-control sample (300 incident type 2 diabetes cases, 300 controls) was constructed for DNA-methylation profiling. Longitudinal associations were evaluated in Cox models (case-cohort) and conditional logistic models (case-control), adjusting for age, sex, anthropometry, lifestyle and a large set of type 2 diabetes-related biomarkers.Higher circulating IGFBP-2 concentrations (median 92 ng/mL) were cross-sectional linked to lower BMI, waist circumference, fatty liver index, triglycerides, fetuin A, ALT and γ-GT, and longitudinal associated with lower type 2 diabetes risk (HR per SD 0.65, 95%CI 0.53, 0.8). A methylation score based on seven type 2 diabetes-related CpGs in the IGFBP-2 gene was associated with higher type 2 diabetes risk (OR per SD 2.7, 95%CI 2.1, 3.5).Our results are consistent with a type 2 diabetes-protective effect of high circulating IGFBP-2 concentration, and suggest that epigenetic silencing of the IGFBP-2 gene might predispose for type 2 diabetes.

5.
Nat Commun ; 9(1): 3184, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093639

RESUMO

Ewing sarcoma (EWS) is a pediatric cancer characterized by the EWSR1-FLI1 fusion. We performed a genome-wide association study of 733 EWS cases and 1346 unaffected individuals of European ancestry. Our study replicates previously reported susceptibility loci at 1p36.22, 10q21.3 and 15q15.1, and identifies new loci at 6p25.1, 20p11.22 and 20p11.23. Effect estimates exhibit odds ratios in excess of 1.7, which is high for cancer GWAS, and striking in light of the rarity of EWS cases in familial cancer syndromes. Expression quantitative trait locus (eQTL) analyses identify candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ). The 20p11.22 locus is near NKX2-2, a highly overexpressed gene in EWS. Interestingly, most loci reside near GGAA repeat sequences and may disrupt binding of the EWSR1-FLI1 fusion protein. The high locus to case discovery ratio from 733 EWS cases suggests a genetic architecture in which moderate risk SNPs constitute a significant fraction of risk.

6.
Front Behav Neurosci ; 12: 125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997484

RESUMO

Prenatal alcohol exposure (PAE) is known to elicit a broad range of systemic effects, including neurophysiological alterations that result in adverse behavioral and cognitive outcomes. However, molecular pathways underlying these long-term intrauterine effects remain to be investigated. Here, we tested a hypothesis that PAE may lead to epigenetic alterations to the DNA resulting in attentional and cognitive alterations of the children. We report the results of the study that included 156 primary school children of the Franconian Cognition and Emotion Studies (FRANCES) cohort which were tested for an objective marker of PAE, ethyl glucuronide (EtG) in meconium at birth. Thirty-two newborns were found to be exposed to alcohol with EtG values above 30 ng/g (EtG+). Previously we described PAE being associated with lower IQ and smaller amplitude of the event-related potential component P3 in go trials (Go-P3), which indicates a reduced capacity of attentional resources. Whole-genome methylation analysis of the buccal cell DNA revealed 193 differentially methylated genes in children with positive meconium EtG, that were clustered into groups involved in epigenetic modifications, neurodegeneration, neurodevelopment, axon guidance and neuronal excitability. Furthermore, we detected mediation effects of the methylation changes in DPP10 and SLC16A9 genes on the EtG related cognitive and attention-related deficits. Our results suggest that system-wide epigenetic changes are involved in long-term effects of PAE. In particular, we show an epigenetic mediation of PAE effects on cognition and attention-related processes.

7.
Dev Psychopathol ; : 1-13, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29606180

RESUMO

Epigenetic DNA modifications in genes related to the hypothalamic-pituitary-adrenal (HPA) axis are discussed as a mechanism underlying the association between prenatal depression and altered child HPA activity. In a longitudinal study, DNA methylation changes related to prenatal depressive symptoms were investigated in 167 children aged 6 to 9 years. At six candidate genes, 126 cytosine-guanine dinucleotides were considered without correcting for multiple testing due to the exploratory nature of the study. Further associations with the basal child HPA activity were examined. Children exposed to prenatal depressive symptoms exhibited lower bedtime cortisol (p = .003, ηp2 = 0.07) and a steeper diurnal slope (p = .023, ηp2 = 0.06). For total cortisol release, prenatal exposure was related to lower cortisol release in boys, and higher release in girls. Furthermore, prenatal depressive symptoms were associated with altered methylation in the glucocorticoid receptor gene (NR3C1), the mineralocorticoid receptor gene (NR3C2), and the serotonin receptor gene (SLC6A4), with some sex-specific effects (p = .012-.040, ηp2 = 0.03-0.04). In boys, prenatal depressive symptoms predicted bedtime cortisol mediated by NR3C2 methylation, indirect effect = -0.07, 95% confidence interval [-0.16, -0.02]. Results indicate relations of prenatal depressive symptoms to both child basal HPA activity and DNA methylation, partially fitting a mediation model, with exposed boys and girls being affected differently.

8.
Hum Mol Genet ; 27(3): 546-558, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186428

RESUMO

Progranulin is a secreted protein with important functions in processes including immune and inflammatory response, metabolism and embryonic development. The present study aimed at identification of genetic factors determining progranulin concentrations. We conducted a genome-wide association meta-analysis for serum progranulin in three independent cohorts from Europe: Sorbs (N = 848) and KORA (N = 1628) from Germany and PPP-Botnia (N = 335) from Finland (total N = 2811). Single nucleotide polymorphisms (SNPs) associated with progranulin levels were replicated in two additional German cohorts: LIFE-Heart Study (Leipzig; N = 967) and Metabolic Syndrome Berlin Potsdam (Berlin cohort; N = 833). We measured mRNA expression of genes in peripheral blood mononuclear cells (PBMC) by micro-arrays and performed mRNA expression quantitative trait and expression-progranulin association studies to functionally substantiate identified loci. Finally, we conducted siRNA silencing experiments in vitro to validate potential candidate genes within the associated loci. Heritability of circulating progranulin levels was estimated at 31.8% and 26.1% in the Sorbs and LIFE-Heart cohort, respectively. SNPs at three loci reached study-wide significance (rs660240 in CELSR2-PSRC1-MYBPHL-SORT1, rs4747197 in CDH23-PSAP and rs5848 in GRN) explaining 19.4%/15.0% of the variance and 61%/57% of total heritability in the Sorbs/LIFE-Heart Study. The strongest evidence for association was at rs660240 (P = 5.75 × 10-50), which was also associated with mRNA expression of PSRC1 in PBMC (P = 1.51 × 10-21). Psrc1 knockdown in murine preadipocytes led to a consecutive 30% reduction in progranulin secretion. In conclusion, the present meta-GWAS combined with mRNA expression identified three loci associated with progranulin and supports the role of PSRC1 in the regulation of progranulin secretion.

9.
Nat Commun ; 8(1): 744, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963451

RESUMO

There are few examples of robust associations between rare copy number variants (CNVs) and complex continuous human traits. Here we present a large-scale CNV association meta-analysis on anthropometric traits in up to 191,161 adult samples from 26 cohorts. The study reveals five CNV associations at 1q21.1, 3q29, 7q11.23, 11p14.2, and 18q21.32 and confirms two known loci at 16p11.2 and 22q11.21, implicating at least one anthropometric trait. The discovered CNVs are recurrent and rare (0.01-0.2%), with large effects on height (>2.4 cm), weight (>5 kg), and body mass index (BMI) (>3.5 kg/m2). Burden analysis shows a 0.41 cm decrease in height, a 0.003 increase in waist-to-hip ratio and increase in BMI by 0.14 kg/m2 for each Mb of total deletion burden (P = 2.5 × 10-10, 6.0 × 10-5, and 2.9 × 10-3). Our study provides evidence that the same genes (e.g., MC4R, FIBIN, and FMO5) harbor both common and rare variants affecting body size and that anthropometric traits share genetic loci with developmental and psychiatric disorders.Individual SNPs have small effects on anthropometric traits, yet the impact of CNVs has remained largely unknown. Here, Kutalik and co-workers perform a large-scale genome-wide meta-analysis of structural variation and find rare CNVs associated with height, weight and BMI with large effect sizes.


Assuntos
Estatura/genética , Peso Corporal/genética , Grupo com Ancestrais do Continente Europeu/genética , Antropometria , Índice de Massa Corporal , Tamanho Corporal/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 22/genética , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 7/genética , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Fenótipo , Relação Cintura-Quadril
10.
Curr Opin Clin Nutr Metab Care ; 20(4): 266-271, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28441146

RESUMO

PURPOSE OF REVIEW: Glucose metabolism is a central process in mammalian energy homeostasis. Its deregulation is a key factor in development of metabolic disease like diabetes and cancer. In recent decades, our understanding of gene regulation at the signaling, chromatin and posttranscriptional levels has seen dramatic developments. RECENT FINDINGS: A number of epigenetic mechanisms that do not affect the genetic code can be assessed with new technologies. However, increasing complexity becomes a major challenge for translation into clinical application. SUMMARY: The current review provides an update of transcriptional control of glucose metabolism, focusing on epigenetic regulators, DNA-methylation, histone modifications and noncoding RNAs. Recent studies heavily support the importance of those mechanisms for future therapeutics and preventive efforts for metabolic diseases.


Assuntos
Epigênese Genética/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Acetilação , Animais , Metilação de DNA/fisiologia , Código das Histonas/fisiologia , Histonas/metabolismo , Humanos , Doenças Metabólicas/prevenção & controle , Doenças Metabólicas/terapia , Metilação , RNA não Traduzido
11.
PLoS One ; 12(3): e0172995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28296976

RESUMO

AIMS: Dilated cardiomyopathy (DCM) is an important cause of heart failure with a strong familial component. We performed an exome-wide array-based association study (EWAS) to assess the contribution of missense variants to sporadic DCM. METHODS AND RESULTS: 116,855 single nucleotide variants (SNVs) were analyzed in 2796 DCM patients and 6877 control subjects from 6 populations of European ancestry. We confirmed two previously identified associations with SNVs in BAG3 and ZBTB17 and discovered six novel DCM-associated loci (Q-value<0.01). The lead-SNVs at novel loci are common and located in TTN, SLC39A8, MLIP, FLNC, ALPK3 and FHOD3. In silico fine mapping identified HSPB7 as the most likely candidate at the ZBTB17 locus. Rare variant analysis (MAF<0.01) demonstrated significant association for TTN variants only (P = 0.0085). All candidate genes but one (SLC39A8) exhibit preferential expression in striated muscle tissues and mutations in TTN, BAG3, FLNC and FHOD3 are known to cause familial cardiomyopathy. We also investigated a panel of 48 known cardiomyopathy genes. Collectively, rare (n = 228, P = 0.0033) or common (n = 36, P = 0.019) variants with elevated in silico severity scores were associated with DCM, indicating that the spectrum of genes contributing to sporadic DCM extends beyond those identified here. CONCLUSION: We identified eight loci independently associated with sporadic DCM. The functions of the best candidate genes at these loci suggest that proteostasis regulation might play a role in DCM pathophysiology.


Assuntos
Cardiomiopatia Dilatada/genética , Exoma , Predisposição Genética para Doença , Humanos , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único
12.
Horm Metab Res ; 49(5): 343-349, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28351093

RESUMO

Angiopoietin-like protein 8 (ANGPTL8)/betatrophin expression in visceral adipose tissue and associations with circulating fatty acid profile have not yet been investigated.Forty subjects were included in a cross-sectional study, 57 in a dietary weight reduction intervention. Circulating Angiopoietin-like protein 8/betatrophin was measured in all subjects. Liver and adipose tissue were sampled and plasma fatty acids and tissue Angiopoietin-like protein 8/betatrophin expression were evaluated in the cross-sectional study. In the intervention study oral glucose testing and liver magnetic resonance scanning at baseline and after 6 months were performed. Angiopoietin-like protein 8/betatrophin mRNA was increased in visceral compared to subcutaneous adipose tissue (p<0.001). Circulating ANGPTL8/betatrophin correlated with liver steatosis (r=0.42, p=0.047), triacylglycerols (r=0.34, p=0.046), saturated (r=0.43, p=0.022), monounsaturated (r=0.51, p=0.007), and polyunsaturated fatty acids (r=-0.53, p=0.004). In the intervention study, baseline Angiopoietin-like protein 8/betatrophin correlated with age (r=0.32, p=0.010) and triacylglycerols (r=0.30, p=0.02) and was increased with hepatic steatosis (p=0.033). Weight loss reduced liver fat by 45% and circulating Angiopoietin-like protein 8/betatrophin by 11% (288±17 vs. 258±17 pg/ml; p=0.015). Angiopoietin-like protein 8/betatrophin is related to liver steatosis, while visceral adipose tissue represents an additional site of expression in humans.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Fígado Gorduroso/genética , Gordura Intra-Abdominal/metabolismo , Hormônios Peptídicos/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Estudos de Coortes , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hormônios Peptídicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(14): 3613-3618, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28265093

RESUMO

Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.


Assuntos
Histona Desacetilases/genética , Placa Aterosclerótica/complicações , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Acidente Vascular Cerebral/genética , alfa 1-Antitripsina/genética , Regiões 3' não Traduzidas , Medição da Troca de Deutério , Estudos de Associação Genética , Humanos , Elastase de Leucócito/metabolismo , Espectrometria de Massas , Placa Aterosclerótica/genética , Acidente Vascular Cerebral/etiologia , alfa 1-Antitripsina/metabolismo
14.
Hepatol Res ; 47(9): 890-901, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27689765

RESUMO

AIMS: Molecular adaptations in human non-alcoholic fatty liver disease (NAFLD) are incompletely understood. This study investigated the main gene categories related to hepatic de novo lipogenesis and lipid oxidation capacity. METHODS: Liver specimens of 48 subjects were histologically classified according to steatosis severity. In-depth analyses were undertaken using real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. Lipid profiles were analyzed by gas chromatography/flame ionization detection, and effects of key fatty acids were studied in primary human hepatocytes. RESULTS: Real-time polymerase chain reaction, immunoblotting, and immunohistochemistry indicated 5'AMP-activated protein kinase (AMPK) to be increased with steatosis score ≥ 2 (all P < 0.05), including various markers of de novo lipogenesis and lipid degradation (all P < 0.05). Regarding endoplasmic reticulum stress, X-Box binding protein-1 (XBP1) was upregulated in steatosis score ≥ 2 (P = 0.029) and correlated with plasma palmitate (r = 0.34; P = 0.035). Palmitate incubation of primary human hepatocytes increased XBP1 and downstream stearoyl CoA desaturase-1 mRNA expression (both P < 0.05). Moreover, plasma and liver tissue exposed a NAFLD-related lipid profile with reduced polyunsaturated/saturated fatty acid ratio, increased palmitate and palmitoleate, and elevated lipogenesis and desaturation indices with steatosis score ≥ 2 (all P < 0.05). CONCLUSION: In humans with advanced fatty liver disease, hepatic AMPK protein is upregulated, potentially in a compensatory manner. Moreover, pathways of lipid synthesis and degradation are co-activated in subjects with advanced steatosis. Palmitate may drive lipogenesis by activating XBP1-mediated endoplasmic reticulum stress and represent a target for future dietary or pharmacological intervention.

15.
Nature ; 541(7635): 81-86, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28002404

RESUMO

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Assuntos
Adiposidade/genética , Índice de Massa Corporal , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Obesidade/genética , Tecido Adiposo/metabolismo , Grupo com Ancestrais do Continente Asiático/genética , Sangue/metabolismo , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Europa (Continente)/etnologia , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Índia/etnologia , Masculino , Obesidade/sangue , Obesidade/complicações , Sobrepeso/sangue , Sobrepeso/complicações , Sobrepeso/genética
16.
Hum Mol Genet ; 25(18): 4127-4142, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27559109

RESUMO

More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed countries a considerable part of them are caused by viral infections. In this study, we aimed to search for genetic variants associated with diarrhoeal disease in young children by meta-analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology (EAGLE) consortium. Data about diarrhoeal disease in two time windows (around 1 year of age and around 2 years of age) was obtained via parental questionnaires, doctor interviews or medical records. Standard quality control and statistical tests were applied to the 1000 Genomes imputed genotypic data. The meta-analysis (N = 5758) followed by replication (N = 3784) identified a genome-wide significant association between rs8111874 and diarrhoea at age 1 year. Conditional analysis suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 participates in the production of histo-blood group antigens and has previously been implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro-secretory systems were detected as relevant organs. In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 gene in diarrhoeal disease in young children from the general population.


Assuntos
Diarreia/genética , Fucosiltransferases/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alelos , Pré-Escolar , Diarreia/patologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Polimorfismo de Nucleotídeo Único
17.
N Engl J Med ; 374(12): 1134-44, 2016 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-26934567

RESUMO

BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).


Assuntos
Angiopoietinas/genética , Moléculas de Adesão Celular/genética , Doença da Artéria Coronariana/genética , Lipase Lipoproteica/genética , Mutação , Triglicerídeos/sangue , Idoso , Proteína 4 Semelhante a Angiopoietina , Feminino , Técnicas de Genotipagem , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Fatores de Risco , Análise de Sequência de DNA , Triglicerídeos/genética
18.
PLoS One ; 11(3): e0152314, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27019061

RESUMO

Epigenetic regulation has been postulated to affect glucose metabolism, insulin sensitivity and the risk of type 2 diabetes. Therefore, we performed an epigenome-wide association study for measures of glucose metabolism in whole blood samples of the population-based Cooperative Health Research in the Region of Augsburg F4 study using the Illumina HumanMethylation 450 BeadChip. We identified a total of 31 CpG sites where methylation level was associated with measures of glucose metabolism after adjustment for age, sex, smoking, and estimated white blood cell proportions and correction for multiple testing using the Benjamini-Hochberg (B-H) method (four for fasting glucose, seven for fasting insulin, 25 for homeostasis model assessment-insulin resistance [HOMA-IR]; B-H-adjusted p-values between 9.2x10(-5) and 0.047). In addition, DNA methylation at cg06500161 (annotated to ABCG1) was associated with all the aforementioned phenotypes and 2-hour glucose (B-H-adjusted p-values between 9.2x10(-5) and 3.0x10(-3)). Methylation status of additional three CpG sites showed an association with fasting insulin only after additional adjustment for body mass index (BMI) (B-H-adjusted p-values = 0.047). Overall, effect strengths were reduced by around 30% after additional adjustment for BMI, suggesting that this variable has an influence on the investigated phenotypes. Furthermore, we found significant associations between methylation status of 21 of the aforementioned CpG sites and 2-hour insulin in a subset of samples with seven significant associations persisting after additional adjustment for BMI. In a subset of 533 participants, methylation of the CpG site cg06500161 (ABCG1) was inversely associated with ABCG1 gene expression (B-H-adjusted p-value = 1.5x10(-9)). Additionally, we observed an enrichment of the top 1,000 CpG sites for diabetes-related canonical pathways using Ingenuity Pathway Analysis. In conclusion, our study indicates that DNA methylation and diabetes-related traits are associated and that these associations are partially BMI-dependent. Furthermore, the interaction of ABCG1 with glucose metabolism is modulated by epigenetic processes.


Assuntos
Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Glicemia/análise , Índice de Massa Corporal , Ilhas de CpG , DNA/análise , DNA/sangue , DNA/isolamento & purificação , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética , Feminino , Alemanha , Teste de Tolerância a Glucose , Humanos , Insulina/análise , Masculino , Pessoa de Meia-Idade , Fenótipo
19.
Nat Commun ; 7: 10494, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833098

RESUMO

Leptin is an adipocyte-secreted hormone, the circulating levels of which correlate closely with overall adiposity. Although rare mutations in the leptin (LEP) gene are well known to cause leptin deficiency and severe obesity, no common loci regulating circulating leptin levels have been uncovered. Therefore, we performed a genome-wide association study (GWAS) of circulating leptin levels from 32,161 individuals and followed up loci reaching P<10(-6) in 19,979 additional individuals. We identify five loci robustly associated (P<5 × 10(-8)) with leptin levels in/near LEP, SLC32A1, GCKR, CCNL1 and FTO. Although the association of the FTO obesity locus with leptin levels is abolished by adjustment for BMI, associations of the four other loci are independent of adiposity. The GCKR locus was found associated with multiple metabolic traits in previous GWAS and the CCNL1 locus with birth weight. Knockdown experiments in mouse adipose tissue explants show convincing evidence for adipogenin, a regulator of adipocyte differentiation, as the novel causal gene in the SLC32A1 locus influencing leptin levels. Our findings provide novel insights into the regulation of leptin production by adipose tissue and open new avenues for examining the influence of variation in leptin levels on adiposity and metabolic health.


Assuntos
Regulação da Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Leptina/sangue , Leptina/metabolismo , Tecido Adiposo/metabolismo , Animais , Técnicas de Silenciamento de Genes , Leptina/genética , Masculino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA