Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360992

RESUMO

Several protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output. We further asked if basic media composition affects MK maturation. In an iterative process, we first compared two HEC induction protocols. We found significantly more HECs using the modified protocol including activin A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15; p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets. The hiPSC-platelet's coagulation hyporeactivity compared to adult platelets was confirmed by thromboelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient amounts of functional platelets for clinical application.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Técnicas de Reprogramação Celular/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Megacariócitos/citologia , Células Cultivadas , Meios de Cultura/química , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
2.
Theranostics ; 11(17): 8430-8447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373751

RESUMO

Self-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate. Methods: Primary endothelial colony forming cells (ECFCs), skin fibroblasts (FBs) and keratinocytes (KCs) were isolated from human tissues and polyclonally propagated under 2D xeno-free conditions. Human tissue-derived iPSCs were differentiated into endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs) and keratinocytes (hiPSC-KCs) according to efficiency-optimized protocols. Cell identity and purity were confirmed by flow cytometry and clonogenicity indicated their stem/progenitor potential. Triple cell type floating spheroids formation was promoted by human platelet-derived growth factors containing culture conditions, using nanoparticle cell labelling for monitoring the organization process. Planar human skin regeneration was assessed in full-thickness wounds of immune-deficient mice upon transplantation of hiPSC-derived single cell suspensions. Results: Organoids displayed a distinct architecture with surface-anchored keratinocytes surrounding a stromal core, and specific signaling patterns in response to inflammatory stimuli. FGF-7 mRNA transfection was required to accelerate keratinocyte long-term fitness. Stratified human skin also self-assembled within two weeks after either adult- or iPSC-derived skin cell-suspension liquid-transplantation, healing deep wounds of mice. Transplant vascularization significantly accelerated in the presence of co-transplanted endothelial progenitors. Mechanistically, extracellular vesicles mediated the multifactorial platelet-derived trophic effects. No tumorigenesis occurred upon xenografting. Conclusion: This illustrates the superordinate progenitor self-organization principle and permits novel rapid 3D skin-related pharmaceutical high-content testing opportunities with floating spheroid skin organoids. Multi-cell transplant self-organization facilitates development of iPSC-based organ regeneration strategies using cell suspension transplantation supported by human platelet factors.

3.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068404

RESUMO

Numerous cell-based therapeutics are currently being tested in clinical trials. Human platelet lysate (HPL) is a valuable alternative to fetal bovine serum as a cell culture medium supplement for a variety of different cell types. HPL as a raw material permits animal serum-free cell propagation with highly efficient stimulation of cell proliferation, enabling humanized manufacturing of cell therapeutics within a reasonable timeframe. Providers of HPL have to consider dedicated quality issues regarding identity, purity, potency, traceability and safety. Release criteria have to be defined, characterizing the suitability of HPL batches for the support of a specific cell culture. Fresh or expired platelet concentrates from healthy blood donors are the starting material for HPL preparation, according to regulatory requirements. Pooling of individual platelet lysate units into one HPL batch can balance donor variation with regard to essential platelet-derived growth factors and cytokines. The increasingly applied pathogen reduction technologies will further increase HPL safety. In this review article, aspects and regulatory requirements of whole blood donation and details of human platelet lysate manufacturing are presented. International guidelines for raw materials are discussed, and defined quality controls, as well as release criteria for safe and GMP-compliant HPL production, are summarized.


Assuntos
Plaquetas/citologia , Técnicas de Cultura de Células/normas , Diferenciação Celular , Animais , Proliferação de Células , Meios de Cultura , Humanos
4.
Sci Rep ; 9(1): 7258, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076619

RESUMO

Pooled human platelet lysate (pHPL) is increasingly used as replacement of animal serum for manufacturing of stromal cell therapeutics. Porcine heparin is commonly applied to avoid clotting of pHPL-supplemented medium but the influence of heparin on cell behavior is still unclear. Aim of this study was to investigate cellular uptake of heparin by fluoresceinamine-labeling and its impact on expression of genes, proteins and function of human stromal cells derived from bone marrow (BM), umbilical cord (UC) and white adipose tissue (WAT). Cells were isolated and propagated using various pHPL-supplemented media with or without heparin. Flow cytometry and immunocytochemistry showed differential cellular internalization and lysosomal accumulation of heparin. Transcriptome profiling revealed regulation of distinct gene sets by heparin including signaling cascades involved in proliferation, cell adhesion, apoptosis, inflammation and angiogenesis, depending on stromal cell origin. The influence of heparin on the WNT, PDGF, NOTCH and TGFbeta signaling pathways was further analyzed by a bead-based western blot revealing most alterations in BM-derived stromal cells. Despite these observations heparin had no substantial effect on long-term proliferation and in vitro tri-lineage differentiation of stromal cells, indicating compatibility for clinically applied cell products.


Assuntos
Expressão Gênica/fisiologia , Heparina/metabolismo , Células Estromais/metabolismo , Plaquetas/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Soro/metabolismo , Transdução de Sinais/fisiologia , Cordão Umbilical/metabolismo
5.
Cell Commun Signal ; 17(1): 10, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704478

RESUMO

BACKGROUND: Deregulated c-Abl activity has been intensively studied in a variety of solid tumors and leukemia. The class-I carcinogen Helicobacter pylori (Hp) activates the non-receptor tyrosine kinase c-Abl to phosphorylate the oncoprotein cytotoxin-associated gene A (CagA). The role of c-Abl in CagA-dependent pathways is well established; however, the knowledge of CagA-independent c-Abl processes is scarce. METHODS: c-Abl phosphorylation and localization were analyzed by immunostaining and immunofluorescence. Interaction partners were identified by tandem-affinity purification. Cell elongation and migration were analyzed in transwell-filter experiments. Apoptosis and cell survival were examined by FACS analyses and MTT assays. In mice experiments and human biopsies, the involvement of c-Abl in Hp pathogenesis was investigated. RESULTS: Here, we investigated the activity and subcellular localization of c-Abl in vitro and in vivo and unraveled the contribution of c-Abl in CagA-dependent and -independent pathways to gastric Hp pathogenesis. We report a novel mechanism and identified strong c-Abl threonine 735 phosphorylation (pAblT735) mediated by the type-IV secretion system (T4SS) effector D-glycero-ß-D-manno-heptose-1,7-bisphosphate (ßHBP) and protein kinase C (PKC) as a new c-Abl kinase. pAblT735 interacted with 14-3-3 proteins, which caused cytoplasmic retention of c-Abl, where it potentiated Hp-mediated cell elongation and migration. Further, the nuclear exclusion of pAblT735 attenuated caspase-8 and caspase-9-dependent apoptosis. Importantly, in human patients suffering from Hp-mediated gastritis c-Abl expression and pAblT735 phosphorylation were drastically enhanced as compared to type C gastritis patients or healthy individuals. Pharmacological inhibition using the selective c-Abl kinase inhibitor Gleevec confirmed that c-Abl plays an important role in Hp pathogenesis in a murine in vivo model. CONCLUSIONS: In this study, we identified a novel regulatory mechanism in Hp-infected gastric epithelial cells by which Hp determines the subcellular localization of activated c-Abl to control Hp-mediated EMT-like processes while decreasing cell death.


Assuntos
Apoptose , Movimento Celular , Helicobacter pylori/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Linhagem Celular Tumoral , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Humanos , Modelos Biológicos , Fosforilação , Fosfotreonina/metabolismo , Fosfotirosina/metabolismo , Proteína Quinase C/metabolismo , Transporte Proteico
6.
Cell Commun Signal ; 15(1): 15, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28427431

RESUMO

Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu involve a complex network of H. pylori-regulated signal transduction pathways leading to the release of proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation, differentiation, and regeneration of the gastric physiology, but also in the induction and progression of inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H. pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of the gastric tumor microenvironment.


Assuntos
Proteínas Hedgehog/metabolismo , Helicobacter pylori/fisiologia , Transdução de Sinais , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Humanos , Inflamação/microbiologia , Inflamação/patologia
7.
Infect Immun ; 84(9): 2671-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382024

RESUMO

CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma.


Assuntos
Antígenos de Bactérias/metabolismo , Linfócitos B/microbiologia , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Humanos , Mesilato de Imatinib/farmacologia , Linfoma de Zona Marginal Tipo Células B/metabolismo , Linfoma de Zona Marginal Tipo Células B/microbiologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Células U937
8.
FEMS Microbiol Lett ; 332(2): 122-30, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22537055

RESUMO

Nonspoiled food that nevertheless contains bacterial pathogens constitutes a much more serious health problem than spoiled food, as the consumer is not warned beforehand. However, data on the diversity of bacterial species in meat juice are rare. To study the bacterial load of fresh pork from ten different distributors, we applied a combination of the conventional culture-based and molecular methods for detecting and quantifying the microbial spectrum of fresh pork meat juice samples. Altogether, we identified 23 bacterial species of ten different families analyzed by 16S rRNA gene sequencing. The majority of isolates were belonging to the typical spoilage bacterial population of lactic acid bacteria (LAB), Enterococcaceae, and Pseudomonadaceae. Several additional isolates were identified as Staphylococcus spp. and Bacillus spp. originating from human and animal skin and other environmental niches including plants, soil, and water. Carnobacterium divergens, a LAB contributing to the spoilage of raw meat even at refrigeration temperature, was the most frequently isolated species in our study (5/10) with a bacterial load of 10(3) - 10(7) CFU mL(-1). In several of the analyzed pork meat juice samples, two bacterial faecal indicators, Serratia grimesii and Serratia proteamaculans, were identified together with another opportunistic food-borne pathogen, Staphylococcus equorum. Our data reveal a high bacterial load of fresh pork meat supporting the potential health risk of meat juice for the end consumer even under refrigerated conditions.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Carne/microbiologia , Animais , Bactérias/genética , Carga Bacteriana , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...