RESUMO
Introduction: Lateral epicondylitis, or tennis elbow, affects 1%-3% of adults aged 35-50, causing pain and weakness in the dominant elbow due to chronic inflammation of the extensor tendon. While corticosteroid injections (CSI) are commonly used for treatment, they offer only short-term relief. Platelet-rich plasma (PRP) is a promising alternative with potential for long-term benefits. This study compares the efficacy of PRP and CSI in treating lateral epicondylitis. Materials & Methods: A randomized controlled trial was conducted at Chettinad Hospital and Research Institute from February 2020 to March 2021, involving patients with lateral epicondylitis unresponsive to non-invasive treatments. Patients were randomly assigned to receive either PRP or CSI, with pre- and post-treatment pain and function assessed using VAS, PSFS, and PRTEE scores. Results: PRP showed better long-term pain reduction and functional improvement than CSI. At 6 months, PRP-treated patients had significantly lower VAS and PRTEE scores, indicating superior outcomes. Discussion: Although CSI provided quicker initial relief, PRP demonstrated sustained benefits at 3 and 6 months. PRP's effectiveness in promoting tissue healing may explain its long-term success. Conclusion: PRP is more effective than CSI for long-term management of lateral epicondylitis, offering superior pain relief and functional improvement.
RESUMO
BACKGROUND: The SPAN trial (Stroke Preclinical Assessment Network) is the largest preclinical study testing acute stroke interventions in experimental focal cerebral ischemia using endovascular filament middle cerebral artery occlusion (MCAo). Besides testing interventions against controls, the prospective design captured numerous biological and procedural variables, highlighting the enormous heterogeneity introduced by the multicenter structure that might influence stroke outcomes. Here, we leveraged the unprecedented sample size achieved by the SPAN trial and the prospective design to identify the biological and procedural variables that affect experimental stroke outcomes in transient endovascular filament MCAo. METHODS: The study cohort included all mice enrolled and randomized in the SPAN trial (N=1789). Mice were subjected to 60-minute MCAo and followed for a month. Thirteen biological and procedural independent variables and 4 functional (weight loss and 4-point neuroscore on days 1 and 2, corner test on days 7 and 28, and mortality) and 3 tissue (day 2, magnetic resonance imaging infarct volumes and swelling; day 30, magnetic resonance imaging tissue loss) outcome variables were prospectively captured. Multivariable regression with stepwise elimination was used to identify the predictors and their effect sizes. RESULTS: Older age, active circadian stage at MCAo, and thinner and longer filament silicone tips predicted higher mortality. Older age, larger body weight, longer anesthesia duration, and longer filament tips predicted worse neuroscores, while high-fat diet and blood flow monitoring predicted milder neuroscores. Older age and a high-fat diet predicted worse corner test performance. While shorter filament tips predicted more ipsiversive turning, longer filament tips appeared to predict contraversive turning. Age, sex, and weight interacted when predicting the infarct volume. Older age was associated with smaller infarcts on day 2 magnetic resonance imaging, especially in animals with larger body weights; this association was most conspicuous in females. High-fat diet also predicted smaller infarcts. In contrast, the use of cerebral blood flow monitoring and more severe cerebral blood flow drop during MCAo, longer anesthesia, and longer filament tips all predicted larger infarcts. Bivariate analyses among the dependent variables highlighted a disconnect between tissue and functional outcomes. CONCLUSIONS: Our analyses identified variables affecting endovascular filament MCAo outcome, an experimental stroke model used worldwide. Multiple regression refuted some commonly reported predictors and revealed previously unrecognized associations. Given the multicenter prospective design that represents a sampling of real-world conditions, the degree of heterogeneity mimicking clinical trials, the large number of predictors adjusted for in the multivariable model, and the large sample size, we think this is the most definitive analysis of the predictors of preclinical stroke outcome to date. Future multicenter experimental stroke trials should standardize or at least ensure a balanced representation of the biological and procedural variables identified herein as potential confounders.
Assuntos
Infarto da Artéria Cerebral Média , Animais , Masculino , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/patologia , Camundongos , Feminino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Prospectivos , AVC Isquêmico/diagnóstico por imagemRESUMO
Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.
Assuntos
Neoplasias Encefálicas , Canabidiol , Glioblastoma , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Canabidiol/farmacologia , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Grânulos de Estresse/metabolismo , Grânulos de Estresse/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Iniciação 2 em Eucariotos/metabolismoRESUMO
Gallbladder cancer (GBC) stands out as one of the most widespread malignancies impacting the biliary tract globally. Despite increasing interest, to the best of our knowledge, no meta-analysis has been undertaken to amalgamate the existing data concerning the prognostic significance of micro-RNAs (miRNAs) in GBC in comparison to studies on miRNAs in other cancers. Hence, this systematic review and meta-analysis aimed at determining the prognostic significance of miRNAs in GBC patients. Comprehensive literature searches were conducted across PubMed, Cochrane Library, Ovid, Scopus, and Science Direct databases. Studies that evaluated the association between miRNAs and overall survival in GBC patients were included. Random-effect meta-analysis was employed to pool hazard ratios (HRs) and their 95% confidence intervals (CIs) across studies. A total of 15 studies, encompassing 16 miRs, were included for our analysis. The pooled analysis revealed that a high expression of miR-204, miR-7-2-3p, miR-29c-3p, miR-125b, miR-20a, miR-139-5p, miR-141, miR-92b-3p, miR-335, and miR-372 was significantly associated with poor prognosis and increased risk (HR>1 and the upper bound of the 95% CI>1). Additionally, these miRNAs were associated with the overall survival (HR = 1.56, 95% CI = 0.91-2.20, I2 = 91.82%). Significant heterogeneity was observed and could be attributed to the limited number of studies available on the GBC and significant reliance on quantitative real-time PCR for the detection of miRNAs. In conclusion, specific miRNAs exhibit prognostic significance in GBC, with potential implications for patient stratification and targeted therapeutic interventions. However, due to the heterogeneity among studies, these findings should be interpreted cautiously and validated in larger cohorts.
RESUMO
An accurate and reliable patient-specific quality assurance (PSQA) is crucial to ensure the safety and precision of Stereotactic body radiation therapy (SBRT) in treating Hepatocellular carcinoma (HCC). This study examines the effectiveness of a novel hybrid 3D-printed hybrid coaxial cylindrical phantom for PSQA in the SBRT of HCC. The study compared three different point dose verification techniques for PSQA: a traditional solid water phantom, two dimensional detector array I'MatriXX, and a newly developed hybrid 3D-printed phantom. Thirty SBRT HCC liver cases were examined using these techniques, and point doses were measured and compared to planned doses using the perpendicular composite method with solid water and I'MatriXX phantoms. Unlike the other two methods, the point dose was compared in true composite geometry using the hybrid 3D-printed phantom, which enhanced the accuracy and consistency of PSQA. The study aims to assess the statistical significance and accuracy of the hybrid 3D-printed phantom compared to other methods. The results showed all techniques complied with the institutional threshold criteria of within ± 3% for point-dose measurement discrepancies. The hybrid 3D-printed phantom was found to have better consistency with a lower standard deviation than traditional methods. Statistical analysis using Student's t-test revealed the statistical significance of the hybrid 3D-printed phantom technique in patient-specific point-dose assessments with a p-value < 0.01. The hybrid 3D-printed phantom developed institutionally is cost-effective and easy to handle. It has been proven to be a valuable tool for PSQA in SBRT for the treatment of HCC and has demonstrated its practicality and reliability.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radiocirurgia , Humanos , Radiocirurgia/métodos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Reprodutibilidade dos Testes , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Impressão Tridimensional , Água , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem RadioterapêuticaRESUMO
Ischemic stroke is caused by obstructed cerebral blood flow, which results in neurological injury and poor outcomes. Pro-inflammatory signaling from both residential and infiltrating immune cells potentiates cerebral injury and worsens patient outcomes after stroke. While the occurrence of a stroke exhibits a time-of-day-dependent pattern, it remains unclear whether disrupted circadian rhythms modulate post-stroke immunity. In this study, we hypothesized that stroke timing differentially affects immune activation in mice. Following middle cerebral artery occlusion (MCAO), circadian genes BMAL1, CLOCK, Cry1, and Cry2 elevated at ZT06, with a significant difference between ZT06 and ZT18. Conversely, expression of the negative limb circadian clock gene, Per1, decreased at ZT06 and ZT18 in stroke mice compared to sham. Paralleling these circadian gene expression changes, we observed a significant increase in TNF-α and a decrease in IL-10 expression at 48 h post-MCAO, when the procedure was performed at ZT06 (MCAO-ZT6), which corresponds to a deep sleep period, as compared to when the stroke was induced at ZT12 (MCAO-ZT12), ZT18 (MCAO-ZT18), or ZT0 (MCAO-ZT12). Similarly, increased pro-inflammatory, decreased anti-inflammatory monocytes, and increased NLRP3 were observed in blood, while changes in the expression of CD11b and Iba1 were noted within brain tissue at 48 h of MCAO-ZT06, as compared to MCAO-ZT18. Consistent with the increased immune response, infarct volume and sensorimotor deficits were greater in MCAO-ZT06 mice compared to MCAO-ZT18 mice at 48 h. Finally, we found reduced weight and length of the spleen while splenocytes showed significant time-dependent changes in Tregs, Bregs, and monocytes in MCAO-ZT06 mice. Taken together, this study demonstrates that circulating and splenic immune responses following ischemic stroke exhibit a circadian expression pattern which may contribute to time-of-day-dependent stroke outcomes.
RESUMO
Gallbladder cancer (GBC) is a lethal disease with surgical resection as the only curative treatment. However, many patients are ineligible for surgery, and current adjuvant treatments exhibit limited effectiveness. Next-generation sequencing has improved our understanding of molecular pathways in cancer, sparking interest in microRNA-based gene regulation. The aim of the study is to identify dysregulated miRNAs in GBC and investigate their potential as therapeutic tools for effective and targeted treatment strategies. GBC and control tissue samples were sequenced for miRNA expression using the Illumina HiSeq platform. Biological processes and related pathways were determined using the Panther and Gene Ontology databases. 439 significantly differentially expressed miRNAs were identified; 19 of them were upregulated and 29 were downregulated. Key enriched biological processes included immune cell apoptosis, endoplasmic reticulum (ER) overload response, and negative regulation of the androgen receptor (AR) signaling pathway. Panther analysis revealed the insulin-like growth factor (IGF)-mitogen activated protein kinases (MAPK) cascade, p38 MAPK pathway, p53 pathway, and FAS (a subgroup of the tumor necrosis factor receptor) signaling pathway as highly enriched among dysregulated miRNAs. Kirsten rat sarcoma virus (KRAS), AR, and interferon gamma (IFN-γ) pathways were identified among the key pathways potentially amenable to targeted therapy. We concluded that a combination approach involving miRNA-based interventions could enhance therapeutic outcomes. Our research emphasizes the importance of precision medicine, targeting pathways using sense and anti-sense miRNAs as potential therapies in GBC.
Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , MicroRNAs , Humanos , MicroRNAs/metabolismo , Neoplasias da Vesícula Biliar/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Transdução de Sinais/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismoRESUMO
The pandemic COVID-19 (coronavirus disease 2019) is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which devastated the global economy and healthcare system. The infection caused an unforeseen rise in COVID-19 patients and increased the mortality rate globally. This study gives an overall idea about host-pathogen interaction, immune responses to COVID-19, recovery status of infection, targeted organs and complications associated, and comparison of post-infection immunity in convalescent subjects and non-infected individuals. The emergence of the variants and episodes of COVID-19 infections made the situation worsen. The timely introduction of vaccines and precautionary measures helped control the infection's severity. Later, the population that recovered from COVID-19 grew significantly. However, understanding the impact of healthcare issues resulting after infection is paramount for improving an individual's health status. It is now recognised that COVID-19 infection affects multiple organs and exhibits a broad range of clinical manifestations. So, post COVID-19 infection creates a high risk in individuals with already prevailing health complications. The identification of post-COVID-19-related health issues and their appropriate management is of greater importance to improving patient's quality of life. The persistence, sequelae and other medical complications that normally last from weeks to months after the recovery of the initial infection are involved with COVID-19. A multi-disciplinary approach is necessary for the development of preventive measures, techniques for rehabilitation and strategies for clinical management when it comes to long-term care.
RESUMO
Introduction: Chronic neuroinflammation can exist for months to years following traumatic brain injury (TBI), although the underlying mechanisms remain poorly understood. Methods: In the current study, we used a controlled cortical impact mouse model of TBI to examine whether proinflammatory senescent cells are present in the brain long-term (months) after TBI and whether ablation of these cells via administration of senolytic drugs can improve long-term functional outcome after TBI. The results revealed that astrocytes and microglia in the cerebral cortex, hippocampus, corpus callosum and lateral posterior thalamus colocalized the senescent cell markers, p16Ink4a or p21Cip1/Waf1 at 5 weeks post injury (5wpi) and 4 months post injury (4mpi) in a controlled cortical impact (CCI) model. Intermittent administration of the senolytic drugs, dasatinib and quercetin (D + Q) beginning 1-month after TBI for 13 weeks significantly ablated p16Ink4a-positive- and p21Cip1/Waf1-positive-cells in the brain of TBI animals, and significantly reduced expression of the major senescence-associated secretory phenotype (SASP) pro-inflammatory factors, interleukin-1ß and interleukin-6. Senolytic treatment also significantly attenuated neurodegeneration and enhanced neuron number at 18 weeks after TBI in the ipsilateral cortex, hippocampus, and lateral posterior thalamus. Behavioral testing at 18 weeks after TBI further revealed that senolytic therapy significantly rescued defects in spatial reference memory and recognition memory, as well as depression-like behavior in TBI mice. Discussion: Taken as a whole, these findings indicate there is robust and widespread induction of senescent cells in the brain long-term after TBI, and that senolytic drug treatment begun 1-month after TBI can efficiently ablate the senescent cells, reduce expression of proinflammatory SASP factors, reduce neurodegeneration, and rescue defects in reference memory, recognition memory, and depressive behavior.
RESUMO
The global health landscape has experienced a shift towards non-communicable diseases, with cardiovascular diseases and cancer as leading causes of mortality. Although advancements in healthcare have led to an increase in life expectancy, they have concurrently resulted in a greater burden of chronic health conditions. Unintended consequences of anticancer therapies on various tissues, particularly the cardiovascular system, contribute to elevated morbidity and mortality rates that are not directly attributable to cancer. Consequently, the field of cardio-oncology has emerged to address the prevalence of CVD in cancer survivors and the cardiovascular toxicity associated with cancer therapies. Non-coding RNAs (ncRNAs) have been found to play a crucial role in early diagnosis, prognosis, and therapeutics within the realm of cardio-oncology. This comprehensive review evaluates the risk assessment of cancer survivors concerning the acquisition of adverse cardiovascular consequences, investigates the association of ncRNAs with CVD in patients undergoing cancer treatment, and delves into the role of ncRNAs in the diagnosis, treatment, and prevention of CVD in patients with a history of anti-cancer therapy. A thorough understanding of the pathogenesis of cancer therapy-related cardiovascular disease and the involvement of ncRNAs in cardio-oncology will enable healthcare professionals to provide anticancer treatment with minimized cardiovascular side effects, thereby improving patient outcomes. Ultimately, this comprehensive analysis aims to provide valuable insights into the complex interplay between cancer and cardiovascular diseases, facilitating the development of more effective diagnostic, therapeutic, and preventive strategies in the burgeoning field of cardio-oncology.
Assuntos
Doenças Cardiovasculares , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Humanos , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/genética , Cardiotoxicidade/etiologia , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/epidemiologia , OncologiaRESUMO
BACKGROUND: Leptin has been proposed to be a link between obesity and the increased incidence of various cancers like breast cancer, colon cancer, gastric cancer, etc. The role of leptin in gallbladder cancer is largely undetermined. Moreover, no study has evaluated serum leptin levels and their correlation with clinicopathological characteristics and serum tumour markers in gallbladder cancer (GBC). Therefore, the present study was planned. METHODS: A cross-sectional study was conducted in a tertiary care hospital in Northern India after obtaining ethical approval from the institution. Forty GBC patients staged as per American Joint Committee on Cancer (AJCC) 8th staging system were recruited along with 40 healthy controls. Serum leptin was assayed by sandwich enzyme-linked immunosorbent assay (ELISA) and tumour markers (CA19-9, CEA and CA125) by Chemiluminescence. ROC, Mann Whitney U test, Linear regression and Spearman correlation was performed using Statistical Product and Service Solutions (SPSS) (IBM SPSS Statistics for Windows, Version 25.0, Armonk, NY). BMI was also assessed for both groups. RESULTS: Median BMI for GBC patients was 19.46 (IQR 17.61-22.36). Median serum leptin levels were significantly lower (2.09 (IQR 1.01-7.76) ng/mL) in GBC patients as compared to controls (12.32 (IQR 10.50-14.72) ng/mL). AUC was 0.84 with 100% sensitivity and 75% specificity at 7.57 ng/mL. Serum leptin was not associated with cancer stage, resectability, metastasis, liver infiltration, or tumour markers on linear regression (p=0.74, adjusted R square = -0.07). A significant positive correlation was found between BMI and serum leptin in GBC patients (p=0.00). CONCLUSIONS: Lower BMI and relatively lean presentation of GBC patients may account for low serum leptin levels.
RESUMO
BACKGROUND: Respiratory failure is the primary cause of death in patients with COVID-19, whereas coagulopathy is associated with excessive inflammation and multiorgan failure. Neutrophil extracellular traps (NETs) may exacerbate inflammation and provide a scaffold for thrombus formation. OBJECTIVES: The goal of this study was to determine whether degradation of NETs by recombinant human DNase-I (rhDNase), a safe, Food and Drug Administration-approved drug, reduces excessive inflammation, reverses aberrant coagulation, and improves pulmonary perfusion after experimental acute respiratory distress syndrome (ARDS). METHODS: Intranasal poly(I:C), a synthetic double-stranded RNA, was administered to adult mice for 3 consecutive days to simulate a viral infection, and these subjects were randomized to treatment arms, which received either an intravenous placebo or rhDNase. The effects of rhDNase on immune activation, platelet aggregation, and coagulation were assessed in mice and donor human blood. RESULTS: NETs were observed in bronchoalveolar lavage fluid and within regions of hypoxic lung tissue after experimental ARDS. The administration of rhDNase mitigated peribronchiolar, perivascular, and interstitial inflammation induced by poly(I:C). In parallel, rhDNase degraded NETs, attenuated platelet-NET aggregates, reduced platelet activation, and normalized the clotting time to improve regional perfusion, as observed using gross morphology, histology, and microcomputed tomographic imaging in mice. Similarly, rhDNase reduced NETs and attenuated platelet activation in human blood. CONCLUSION: NETs exacerbate inflammation and promote aberrant coagulation by providing a scaffold for aggregated platelets after experimental ARDS. Intravenous administration of rhDNase degrades NETs and attenuates coagulopathy in ARDS, providing a promising translational approach to improve pulmonary structure and function after ARDS.
Assuntos
COVID-19 , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Adulto , Humanos , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , COVID-19/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Inflamação/metabolismo , Neutrófilos/metabolismoRESUMO
Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.
Assuntos
Lesões Encefálicas Traumáticas , Envelhecimento Cognitivo , Humanos , Senescência Celular , Lesões Encefálicas Traumáticas/complicações , InflamaçãoRESUMO
Analysis on very detailed measurements of resistivity (ρ) and thermoelectric power (S) of magnetic impurity (Co) substituted iron silicide (FeSi) has been presented in this report. The impurity valence electrons of Co dominate the whole physical properties at low temperatures below 35 K, below the critical concentrationxc(≈0.02). The negative thermopower and the positive slope in the resistivity at low temperatures are exciting and show that the system is not entirely insulator below the critical concentration of metal-insulator transition (xc). So, due to the external impurity electrons, the system's magnetic ground state could change considerably compared to the parent compound FeSi. This report may help unveil the interesting low-temperature transport properties betweenx= 0 andx= 0.04 (Fe1-xCoxSi). Two band model and variable range hopping model were employed to explain the low-temperature electrical and thermal transport properties.
RESUMO
Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.
Assuntos
Antineoplásicos , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Humanos , Animais , Endocanabinoides/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Receptor CB1 de Canabinoide/metabolismoRESUMO
Introduction: Glioblastoma (GBM) is the most common invasive brain tumor composed of diverse cell types with poor prognosis. The highly complex tumor microenvironment (TME) and its interaction with tumor cells play important roles in the development, progression, and durability of GBM. Angiogenic and immune factors are two major components of TME of GBM; their interplay is a major determinant of tumor vascularization, immune profile, as well as immune unresponsiveness of GBM. Given the ineffectiveness of current standard therapies (surgery, radiotherapy, and concomitant chemotherapy) in managing patients with GBM, it is necessary to develop new ways of treating these lethal brain tumors. Targeting TME, altering tumor ecosystem may be a viable therapeutic strategy with beneficial effects for patients in their fight against GBM. Materials and Methods: Given the potential therapeutic effects of cannabidiol (CBD) in a wide spectrum of diseases, including malignancies, we tested, for the first time, whether inhalant CBD can inhibit GBM tumor growth using a well-established orthotopic murine model. Optical imaging, histology, immunohistochemistry, and flow cytometry were employed to describe the outcomes such as tumor progression, cancer cell signaling pathways, and the TME. Results: Our findings showed that inhalation of CBD was able to not only limit the tumor growth but also to alter the dynamics of TME by repressing P-selectin, apelin, and interleukin (IL)-8, as well as blocking a key immune checkpoint-indoleamine 2,3-dioxygenase (IDO). In addition, CBD enhanced the cluster of differentiation (CD) 103 expression, indicating improved antigen presentation, promoted CD8 immune responses, and reduced innate Lymphoid Cells within the tumor. Conclusion: Overall, our novel findings support the possible therapeutic role of inhaled CBD as an effective, relatively safe, and easy to administer treatment adjunct for GBM with significant impacts on the cellular and molecular signaling of TME, warranting further research.
Assuntos
Neoplasias Encefálicas , Canabidiol , Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Microambiente Tumoral , Ecossistema , Imunidade Inata , Linhagem Celular Tumoral , Linfócitos/metabolismo , Linfócitos/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologiaRESUMO
Lesbian, Gay, Bisexual, Transgender, Queer, Intersex and Asexual (LGBTQIA+) people struggle to identify a healthcare service that understands their problems and needs. Additionally, healthcare professionals also find it difficult to care for LGBTQIA+ as very little is studied or heard about management. The article presents a protocol for a pilot study aimed at the development of an LGBTQIA+ care curriculum for health science professionals. The study includes Phase I: The development of a curriculum based on a literature review and focus group discussion among LGBTQIA+ individuals, and Phase II: Pilot testing of LGBTQIA+ care curriculum. The study outcome will reflect the improvement in the knowledge of healthcare professionals on LGBTQIA+ care.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/genética , Neoplasias Bucais/terapia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço , MicroRNAs/genética , Biomarcadores Tumorais/genéticaRESUMO
Spontaneous Intracerebral hemorrhage (ICH) is a devastating injury that accounts for 10-15% of all strokes. The rupture of cerebral blood vessels damaged by hypertension or cerebral amyloid angiopathy creates a space-occupying hematoma that contributes toward neurological deterioration and high patient morbidity and mortality. Numerous protocols have explored a role for surgical decompression of ICH via craniotomy, stereotactic guided endoscopy, and minimally invasive catheter/tube evacuation. Studies including, but not limited to, STICH, STICH-II, MISTIE, MISTIE-II, MISTIE-III, ENRICH, and ICES have all shown that, in certain limited patient populations, evacuation can be done safely and mortality can be decreased, but functional outcomes remain statistically no different compared to medical management alone. Only 10-15% of patients with ICH are surgical candidates based on clot location, medical comorbidities, and limitations regarding early surgical intervention. To date, no clearly effective treatment options are available to improve ICH outcomes, leaving medical and supportive management as the standard of care. We recently identified that remote ischemic conditioning (RIC), the non-invasive, repetitive inflation-deflation of a blood pressure cuff on a limb, non-invasively enhanced hematoma resolution and improved neurological outcomes via anti-inflammatory macrophage polarization in pre-clinical ICH models. Herein, we propose a pilot, placebo-controlled, open-label, randomized trial to test the hypothesis that RIC accelerates hematoma resorption and improves outcomes in ICH patients. Twenty ICH patients will be randomized to receive either mock conditioning or unilateral arm RIC (4 cycles × 5 min inflation/5 min deflation per cycle) beginning within 48 h of stroke onset and continuing twice daily for one week. All patients will receive standard medical care according to latest guidelines. The primary outcome will be the safety evaluation of unilateral RIC in ICH patients. Secondary outcomes will include hematoma volume/clot resorption rate and functional outcomes, as assessed by the modified Rankin Scale (mRS) at 1- and 3-months post-ICH. Additionally, blood will be collected for exploratory genomic analysis. This study will establish the feasibility and safety of RIC in acute ICH patients, providing a foundation for a larger, multi-center clinical trial.
RESUMO
Hemoglobin (Hb) is the oxygen transport protein in erythrocytes. In blood, Hb is a tetramer consisting of two Hb-alpha (Hb-α) chains and two Hb-beta (Hb-ß) chains. A number of studies have also shown that Hb-α is also expressed in neurons in both the rodent and human brain. In the current study, we examined for age-related regulation of neuronal Hb-α and hypoxia in the hippocampus and cerebral cortex of intact male and female mice. In addition, to confirm the role and functions of neuronal Hb-α, we also utilized lentivirus CRISPR interference-based Hb-α knockdown (Hb-α CRISPRi KD) in the non-ischemic and ischemic mouse hippocampus and examined the effect on neuronal oxygenation, as well as induction of hypoxia-inducible factor-1α (HIF-1α) and its downstream pro-apoptotic factors, PUMA and NOXA, and on neuronal survival and neurodegeneration. The results of the study revealed an age-related decrease in neuronal Hb-α levels and correlated increase in hypoxia in the hippocampus and cortex of intact male and female mice. Sex differences were observed with males having higher neuronal Hb-α levels than females in all brain regions at all ages. In vivo Hb-α CRISPRi KD in the mouse hippocampus resulted in increased hypoxia and elevated levels of HIF-1α, PUMA and NOXA in the non-ischemic and ischemic mouse hippocampus, effects that were correlated with a significant decrease in neuronal survival and increased neurodegeneration. As a whole, these findings indicate that neuronal Hb-α decreases with age in mice and has an important role in regulating neuronal oxygenation and neuroprotection.