Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Rev Lett ; 128(17): 176405, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570464


The formation of large polarons has been proposed as reason for the high defect tolerance, low mobility, low charge carrier trapping, and low nonradiative recombination rates of lead halide perovskites. Recently, direct evidence for large-polaron formation has been reported from a 50% effective mass enhancement in angle-resolved photoemission of CsPbBr_{3} over theory for the orthorhombic structure. We present in-depth band dispersion measurements of CsPbBr_{3} and GW calculations, which lead to similar effective masses at the valence band maximum of 0.203±0.016 m_{0} in experiment and 0.226 m_{0} in orthorhombic theory. We argue that the effective mass can be explained solely on the basis of electron-electron correlation and large-polaron formation cannot be concluded from photoemission data.

ACS Nano ; 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442015


A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the Γ̅ point and canting of spins at the K̅ point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at K̅ is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the Γ̅ point and 8 meV K̅-K'¯ valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.

Adv Mater ; 33(30): e2101591, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137086


New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals, and Weyl semimetals. In the last few years, large efforts have been made to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non-ideal band structures. For example, topological bands are frequently convoluted with trivial ones, and band structure features of interest can appear far below the Fermi level. This leaves just a handful of materials that are intensively studied. Finding strategies to design new topological materials is a solution. Here, a new mechanism is introduced, which is based on charge density waves and non-symmorphic symmetry, to design an idealized Dirac semimetal. It is then shown experimentally that the antiferromagnetic compound GdSb0.46 Te1.48 is a nearly ideal Dirac semimetal based on the proposed mechanism, meaning that most interfering bands at the Fermi level are suppressed. Its highly unusual transport behavior points to a thus far unknown regime, in which Dirac carriers with Fermi energy very close to the node seem to gradually localize in the presence of lattice and magnetic disorder.

J Phys Chem Lett ; 9(23): 6833-6840, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30433790


Transition-metal chalcogenides are a promising family of materials for applications as photocathodes in photoelectrochemical (PEC) H2 generation. A long-standing challenge for chalcopyrite semiconductors is characterizing their electronic structure, both experimentally and theoretically, because of their relatively high-energy band gaps and spin-orbit coupling (SOC), respectively. In this work, we present single crystals of CuInTe2, whose relatively small optically measured band gap of 0.9 ± 0.03 eV enables electronic structure characterization by angle-resolved photoelectron spectroscopy (ARPES) in conjunction with first-principles calculations incorporating SOC. ARPES measurements reveal bands that are steeply dispersed in energy with a band velocity of 2.5-5.4 × 105 m/s, almost 50% of the extremely conductive material graphene. Additionally, CuInTe2 single crystals are fabricated into electrodes to experimentally determine the valence band edge energy and confirm the thermodynamic suitability of CuInTe2 for water redox chemistry. The electronic structure characterization and band edge position presented in this work provide kinetic and thermodynamic factors that support CuInTe2 as a strong candidate for water reduction.

Nano Lett ; 18(11): 6672-6678, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30281315


Most recently, theoretical calculations predicted the stability of a novel two-dimensional phosphorus honeycomb lattice named blue phosphorus. Here, we report on the growth of blue phosphorus on Au(111) and unravel its structural details using diffraction, microscopy and theoretical calculations. Most importantly, by utilizing angle-resolved photoemission spectroscopy we identify its momentum-resolved electronic structure. We find that Au(111) breaks the sublattice symmetry of blue phosphorus leading to an orbital-dependent band renormalization upon the formation of a (4 × 4) superstructure. Notably, the semiconducting two-dimensional phosphorus realizes its valence band maximum at 0.9 eV binding energy, however, shifted in momentum space due to the substrate-induced band renormalization.

Sci Adv ; 4(2): eaar2317, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29492459


Recent interest in topological semimetals has led to the proposal of many new topological phases that can be realized in real materials. Next to Dirac and Weyl systems, these include more exotic phases based on manifold band degeneracies in the bulk electronic structure. The exotic states in topological semimetals are usually protected by some sort of crystal symmetry, and the introduction of magnetic order can influence these states by breaking time-reversal symmetry. We show that we can realize a rich variety of different topological semimetal states in a single material, CeSbTe. This compound can exhibit different types of magnetic order that can be accessed easily by applying a small field. Therefore, it allows for tuning the electronic structure and can drive it through a manifold of topologically distinct phases, such as the first nonsymmorphic magnetic topological phase with an eightfold band crossing at a high-symmetry point. Our experimental results are backed by a full magnetic group theory analysis and ab initio calculations. This discovery introduces a realistic and promising platform for studying the interplay of magnetism and topology. We also show that we can generally expand the numbers of space groups that allow for high-order band degeneracies by introducing antiferromagnetic order.