Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Nature ; 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34646016

RESUMO

Molecular switch proteins whose cycling between states is controlled by opposing regulators1,2 are central to biological signal transduction. As switch proteins function within highly connected interaction networks3, the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN)4 is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle. We make 55 targeted point mutations to individual protein interaction interfaces of Gsp1 (RAN) and show through quantitative genetic5 and physical interaction mapping that Gsp1 (RAN) interface perturbations have widespread cellular consequences. Contrary to expectation, the cellular effects of the interface mutations group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle kinetics. These results suggest a model in which protein partner binding, or post-translational modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar mechanisms may underlie regulation by other GTPases, and other biological switches. Furthermore, our integrative platform to determine the quantitative consequences of molecular perturbations may help to explain the effects of disease mutations that target central molecular switches.

2.
mSystems ; : e0038821, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519533

RESUMO

Current epidemics, such as AIDS or flu, and the emergence of new threatening pathogens, such as the one causing the current coronavirus disease 2019 (COVID-19) pandemic, represent major global health challenges. While vaccination is an important part of the arsenal to counter the spread of viral diseases, it presents limitations and needs to be complemented by efficient therapeutic solutions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify host-dependent vulnerabilities that can be exploited to dampen viral replication. Such host-directed antiviral therapies are promising and are less prone to the development of drug-resistant viral strains. Here, we first describe proteomics-based strategies that allow the rapid characterization of host-pathogen interactions. We then discuss how such data can be exploited to help prioritize compounds with potential host-directed antiviral activity that can be tested in preclinical models.

6.
Nat Microbiol ; 6(10): 1319-1333, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34556855

RESUMO

The fate of influenza A virus (IAV) infection in the host cell depends on the balance between cellular defence mechanisms and viral evasion strategies. To illuminate the landscape of IAV cellular restriction, we generated and integrated global genetic loss-of-function screens with transcriptomics and proteomics data. Our multi-omics analysis revealed a subset of both IFN-dependent and independent cellular defence mechanisms that inhibit IAV replication. Amongst these, the autophagy regulator TBC1 domain family member 5 (TBC1D5), which binds Rab7 to enable fusion of autophagosomes and lysosomes, was found to control IAV replication in vitro and in vivo and to promote lysosomal targeting of IAV M2 protein. Notably, IAV M2 was observed to abrogate TBC1D5-Rab7 binding through a physical interaction with TBC1D5 via its cytoplasmic tail. Our results provide evidence for the molecular mechanism utilised by IAV M2 protein to escape lysosomal degradation and traffic to the cell membrane, where it supports IAV budding and growth.

7.
JCI Insight ; 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546978

RESUMO

The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, we applied unbiased hierarchical clustering to reverse phase protein array (RPPA) molecular profiles from patient-derived xenograft (PDX) tumors, which revealed two PDX clusters defined by protein networks associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to classify PDX tumors with 88% accuracy. Next, a support vector machine (SVM) classifier algorithm identified a minimalist biomarker signature consisting of eight proteins - Caveolin-1, Sox-2, AXL, STING, Brd4, Claudin-7, Connexin-43, and Fibronectin - whose expression strongly predicted cetuximab response in PDXs using either protein (AUC=0.95) or mRNA (AUC=0.97). A combination of Caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we validated in HNSCC patient tumor samples with known clinical response to cetuximab. These results support further investigation into the combined use of Caveolin-1 and Sox-2 as predictive biomarkers for cetuximab response in the clinic.

8.
Cell Rep ; 36(12): 109742, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551310

RESUMO

Cold-induced thermogenesis in endotherms demands adaptive thermogenesis fueled by mitochondrial respiration and Ucp1-mediated uncoupling in multilocular brown adipocytes (BAs). However, dietary regulation of thermogenesis in BAs isn't fully understood. Here, we describe that the deficiency of Leucine-rich pentatricopeptide repeat containing-protein (Lrpprc) in BAs reduces mtDNA-encoded ETC gene expression, causes ETC proteome imbalance, and abolishes the mitochondria-fueled thermogenesis. BA-specific Lrpprc knockout mice are cold resistant in a 4°C cold-tolerance test in the presence of food, which is accompanied by the activation of transcription factor 4 (ATF4) and proteome turnover in BAs. ATF4 activation genetically by BA-specific ATF4 overexpression or physiologically by a low-protein diet feeding can improve cold tolerance in wild-type and Ucp1 knockout mice. Furthermore, ATF4 activation in BAs improves systemic metabolism in obesogenic environment regardless of Ucp1's action. Therefore, our study reveals a diet-dependent but Ucp1-independent thermogenic mechanism in BAs that is relevant to systemic thermoregulation and energy homeostasis.

9.
Mol Cell Proteomics ; 20: 100132, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389466

RESUMO

Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFß) to determine the structure of the (A3G-Vif-CRL5-CBFß) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFß complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.

10.
J Cell Biol ; 220(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241634

RESUMO

Cells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and superresolved imaging, we identify a module that we term DISCO (distal centriole complex). The DISCO components CEP90, MNR, and OFD1 underlie human ciliopathies. This complex localizes to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR do not generate cilia, fail to assemble distal appendages, and do not transduce Hedgehog signals. Disrupting the satellite pools does not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critical for ciliogenesis. CEP90 recruits the most proximal known distal appendage component, CEP83, to root distal appendage formation, an early step in ciliogenesis. In addition, MNR, but not CEP90, restricts centriolar length by recruiting OFD1. We conclude that DISCO acts at the distal centriole to support ciliogenesis by restraining centriole length and assembling distal appendages, defects in which cause human ciliopathies.

11.
EMBO J ; 40(18): e105658, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34260076

RESUMO

The Ebola virus VP30 protein interacts with the viral nucleoprotein and with host protein RBBP6 via PPxPxY motifs that adopt non-canonical orientations, as compared to other proline-rich motifs. An affinity tag-purification mass spectrometry approach identified additional PPxPxY-containing host proteins hnRNP L, hnRNPUL1, and PEG10, as VP30 interactors. hnRNP L and PEG10, like RBBP6, inhibit viral RNA synthesis and EBOV infection, whereas hnRNPUL1 enhances. RBBP6 and hnRNP L modulate VP30 phosphorylation, increase viral transcription, and exert additive effects on viral RNA synthesis. PEG10 has more modest inhibitory effects on EBOV replication. hnRNPUL1 positively affects viral RNA synthesis but in a VP30-independent manner. Binding studies demonstrate variable capacity of the PPxPxY motifs from these proteins to bind VP30, define PxPPPPxY as an optimal binding motif, and identify the fifth proline and the tyrosine as most critical for interaction. Competition binding and hydrogen-deuterium exchange mass spectrometry studies demonstrate that each protein binds a similar interface on VP30. VP30 therefore presents a novel proline recognition domain that is targeted by multiple host proteins to modulate viral transcription.

12.
Science ; 373(6554): 541-547, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34326236

RESUMO

Repurposing drugs as treatments for COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention. Beginning with sigma receptor ligands and expanding to other drugs from screening in the field, we became concerned that phospholipidosis was a shared mechanism underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone, and four others already in clinical trials, phospholipidosis was monotonically correlated with antiviral efficacy. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the physicochemical properties of drugs and does not reflect specific target-based activities-rather, it may be considered a toxic confound in early drug discovery. Early detection of phospholipidosis could eliminate these artifacts, enabling a focus on molecules with therapeutic potential.


Assuntos
Antivirais/farmacologia , COVID-19/tratamento farmacológico , Reposicionamento de Medicamentos , Lipidoses/induzido quimicamente , Fosfolipídeos/metabolismo , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Antivirais/química , Antivirais/uso terapêutico , Antivirais/toxicidade , COVID-19/virologia , Cátions , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Testes de Sensibilidade Microbiana , SARS-CoV-2/fisiologia , Tensoativos/química , Tensoativos/farmacologia , Tensoativos/toxicidade , Células Vero , Replicação Viral/efeitos dos fármacos
13.
J Biol Chem ; 297(1): 100907, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34166681

RESUMO

Endosomal signaling downstream of G-protein-coupled receptors (GPCRs) has emerged as a novel paradigm with important pharmacological and physiological implications. However, our knowledge of the functional consequences of intracellular signaling is incomplete. To begin to address this gap, we combined an optogenetic approach for site-specific generation of the prototypical second messenger generated by active GPCRs, cyclic AMP (cAMP), with unbiased mass-spectrometry-based analysis of the phosphoproteome. We identified 218 unique, high-confidence sites whose phosphorylation is either increased or decreased in response to cAMP elevation. We next determined that the same amount of cAMP produced from the endosomal membrane led to more robust changes in phosphorylation than the plasma membrane. Remarkably, this was true for the entire repertoire of 218 identified targets and irrespective of their annotated subcellular localizations (endosome, cell surface, nucleus, cytosol). Furthermore, we identified a particularly strong endosome bias for a subset of proteins that are dephosphorylated in response to cAMP. Through bioinformatics analysis, we established these targets as putative substrates for protein phosphatase 2A (PP2A), and we propose compartmentalized activation of PP2A by cAMP-responsive kinases as the likely underlying mechanism. Altogether, our study extends the concept that endosomal signaling is a significant functional contributor to cellular responsiveness to cAMP by establishing a unique role for localized cAMP production in defining categorically distinct phosphoresponses.


Assuntos
AMP Cíclico/metabolismo , Endossomos/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Animais , Células HEK293 , Humanos , Fosfoproteínas/química , Fosforilação , Domínios Proteicos , Proteína Fosfatase 2/metabolismo , Proteoma/química
14.
Curr Biol ; 31(16): 3504-3514.e9, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34171302

RESUMO

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has emphasized the vulnerability of human populations to novel viral pressures, despite the vast array of epidemiological and biomedical tools now available. Notably, modern human genomes contain evolutionary information tracing back tens of thousands of years, which may help identify the viruses that have impacted our ancestors-pointing to which viruses have future pandemic potential. Here, we apply evolutionary analyses to human genomic datasets to recover selection events involving tens of human genes that interact with coronaviruses, including SARS-CoV-2, that likely started more than 20,000 years ago. These adaptive events were limited to the population ancestral to East Asian populations. Multiple lines of functional evidence support an ancient viral selective pressure, and East Asia is the geographical origin of several modern coronavirus epidemics. An arms race with an ancient coronavirus, or with a different virus that happened to use similar interactions as coronaviruses with human hosts, may thus have taken place in ancestral East Asian populations. By learning more about our ancient viral foes, our study highlights the promise of evolutionary information to better predict the pandemics of the future. Importantly, adaptation to ancient viral epidemics in specific human populations does not necessarily imply any difference in genetic susceptibility between different human populations, and the current evidence points toward an overwhelming impact of socioeconomic factors in the case of coronavirus disease 2019 (COVID-19).


Assuntos
Infecções por Coronavirus/história , Coronavirus/genética , Genoma Humano/genética , Interações entre Hospedeiro e Microrganismos/genética , Pandemias/história , Infecções por Coronavirus/virologia , Conjuntos de Dados como Assunto , Evolução Molecular , Extremo Oriente/epidemiologia , Frequência do Gene , Predisposição Genética para Doença , Genoma Viral/genética , Estudo de Associação Genômica Ampla , História Antiga , Projeto Genoma Humano , Humanos , Mutação , Filogenia , Seleção Genética
15.
Cell Metab ; 33(7): 1322-1341.e13, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34019840

RESUMO

Mitochondria control eukaryotic cell fate by producing the energy needed to support life and the signals required to execute programed cell death. The biochemical milieu is known to affect mitochondrial function and contribute to the dysfunctional mitochondrial phenotypes implicated in cancer and the morbidities of aging. However, the physical characteristics of the extracellular matrix are also altered in cancerous and aging tissues. Here, we demonstrate that cells sense the physical properties of the extracellular matrix and activate a mitochondrial stress response that adaptively tunes mitochondrial function via solute carrier family 9 member A1-dependent ion exchange and heat shock factor 1-dependent transcription. Overall, our data indicate that adhesion-mediated mechanosignaling may play an unappreciated role in the altered mitochondrial functions observed in aging and cancer.

16.
Mol Cell ; 81(10): 2201-2215.e9, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34019789

RESUMO

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.


Assuntos
RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Mutação/genética , Andinocilina/farmacologia , Proteínas de Bactérias/metabolismo , Morte Celular/efeitos dos fármacos , Cromossomos Bacterianos/genética , Citoproteção/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutagênese Insercional/genética , Peptídeos/metabolismo , Fenótipo , Relação Estrutura-Atividade , Transcrição Genética , Uridina Difosfato Glucose/metabolismo
17.
Cell Rep ; 35(6): 109105, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979618

RESUMO

Genome engineering of primary human cells with CRISPR-Cas9 has revolutionized experimental and therapeutic approaches to cell biology, but human myeloid-lineage cells have remained largely genetically intractable. We present a method for the delivery of CRISPR-Cas9 ribonucleoprotein (RNP) complexes by nucleofection directly into CD14+ human monocytes purified from peripheral blood, leading to high rates of precise gene knockout. These cells can be efficiently differentiated into monocyte-derived macrophages or dendritic cells. This process yields genetically edited cells that retain transcript and protein markers of myeloid differentiation and phagocytic function. Genetic ablation of the restriction factor SAMHD1 increased HIV-1 infection >50-fold, demonstrating the power of this system for genotype-phenotype interrogation. This fast, flexible, and scalable platform can be used for genetic studies of human myeloid cells in immune signaling, inflammation, cancer immunology, host-pathogen interactions, and beyond, and could facilitate the development of myeloid cellular therapies.

18.
PLoS Biol ; 19(4): e3001191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886552

RESUMO

The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Receptor Smoothened/fisiologia , Animais , Animais Geneticamente Modificados , Domínio Catalítico/genética , Células Cultivadas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Embrião não Mamífero , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas/genética , Transdução de Sinais/genética , Receptor Smoothened/metabolismo , Peixe-Zebra
19.
Nature ; 592(7856): 794-798, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33854239

RESUMO

The initiation of cell division integrates a large number of intra- and extracellular inputs. D-type cyclins (hereafter, cyclin D) couple these inputs to the initiation of DNA replication1. Increased levels of cyclin D promote cell division by activating cyclin-dependent kinases 4 and 6 (hereafter, CDK4/6), which in turn phosphorylate and inactivate the retinoblastoma tumour suppressor. Accordingly, increased levels and activity of cyclin D-CDK4/6 complexes are strongly linked to unchecked cell proliferation and cancer2,3. However, the mechanisms that regulate levels of cyclin D are incompletely understood4,5. Here we show that autophagy and beclin 1 regulator 1 (AMBRA1) is the main regulator of the degradation of cyclin D. We identified AMBRA1 in a genome-wide screen to investigate the genetic basis of  the response to CDK4/6 inhibition. Loss of AMBRA1 results in high levels of cyclin D in cells and in mice, which promotes proliferation and decreases sensitivity to CDK4/6 inhibition. Mechanistically, AMBRA1 mediates ubiquitylation and proteasomal degradation of cyclin D as a substrate receptor for the cullin 4 E3 ligase complex. Loss of AMBRA1 enhances the growth of lung adenocarcinoma in a mouse model, and low levels of AMBRA1 correlate with worse survival in patients with lung adenocarcinoma. Thus, AMBRA1 regulates cellular levels of cyclin D, and contributes to cancer development and the response of cancer cells to CDK4/6 inhibitors.

20.
Cell ; 184(10): 2696-2714.e25, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33891876

RESUMO

Components of the proteostasis network malfunction in aging, and reduced protein quality control in neurons has been proposed to promote neurodegeneration. Here, we investigate the role of chaperone-mediated autophagy (CMA), a selective autophagy shown to degrade neurodegeneration-related proteins, in neuronal proteostasis. Using mouse models with systemic and neuronal-specific CMA blockage, we demonstrate that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging. Imposing CMA loss on a mouse model of Alzheimer's disease (AD) has synergistic negative effects on the proteome at risk of aggregation, thus increasing neuronal disease vulnerability and accelerating disease progression. Conversely, chemical enhancement of CMA ameliorates pathology in two different AD experimental mouse models. We conclude that functional CMA is essential for neuronal proteostasis through the maintenance of a subset of the proteome with a higher risk of misfolding than the general proteome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...