Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Nucleic Acids Res ; 49(15): 8900-8922, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34370034


In eukaryotes, the major nuclear export pathway for mature mRNAs uses the dimeric receptor TAP/p15, which is recruited to mRNAs via the multisubunit TREX complex, comprising the THO core and different export adaptors. Viruses that replicate in the nucleus adopt different strategies to hijack cellular export factors and achieve cytoplasmic translation of their mRNAs. No export receptors are known in plants, but Arabidopsis TREX resembles the mammalian complex, with a conserved hexameric THO core associated with ALY and UIEF proteins, as well as UAP56 and MOS11. The latter protein is an orthologue of mammalian CIP29. The nuclear export mechanism for viral mRNAs has not been described in plants. To understand this process, we investigated the export of mRNAs of the pararetrovirus CaMV in Arabidopsis and demonstrated that it is inhibited in plants deficient in ALY, MOS11 and/or TEX1. Deficiency for these factors renders plants partially resistant to CaMV infection. Two CaMV proteins, the coat protein P4 and reverse transcriptase P5, are important for nuclear export. P4 and P5 interact and co-localise in the nucleus with the cellular export factor MOS11. The highly structured 5' leader region of 35S RNAs was identified as an export enhancing element that interacts with ALY1, ALY3 and MOS11 in vitro.

Regiões 5' não Traduzidas , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/virologia , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Arabidopsis/virologia , Proteínas de Arabidopsis/fisiologia , Proteínas do Capsídeo/metabolismo , Caulimovirus/genética , Caulimovirus/metabolismo , Núcleo Celular/metabolismo , Doenças das Plantas/virologia , RNA Viral/química , DNA Polimerase Dirigida por RNA/metabolismo
Viruses ; 12(9)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932882


The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.

Transporte Ativo do Núcleo Celular/fisiologia , Núcleo Celular/virologia , RNA Viral/fisiologia , Citoplasma/metabolismo , Vírus de DNA/fisiologia , Humanos , Carioferinas/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Transporte de RNA , RNA Mensageiro , RNA Viral/genética , Retroviridae/fisiologia , Proteínas Virais/metabolismo
Virologie (Montrouge) ; 24(4): 246-273, 2020 Aug 01.
Artigo em Francês | MEDLINE | ID: mdl-32795981


The nuclear export of mRNAs is a complex process, involving the participaton of numerous proteins, the recruitement of which starts during the early steps of mRNAs biosynthesis and maturation. This strategy allows the cell to export only mature and non-defective transcripts to the cytoplasm where they are directed to the translational machinery. The vast majority of mRNAs is exported by the dimeric transport receptor TAP-p15, which is mainly recruited by the large multiprotein complex TREX-1. Other mRNAs that do not display all typical features of a mature transcript use variants of the TAP-p15 export pathway or recruit the alternative export receptor CRM1. Most DNA viruses, retroviruses, and influenza viruses, the mRNAs of which are synthesized in the nucleus, also use TAP-p15 and/or CRM1 to export their mRNAs. The highjacking of the cellular export machinery by viral mRNAs usually involves the presence of constitutive structural elements that directly load cellular export factors and/or viral adaptor proteins. Associated with the host export machinery, viral mRNAs escape host surveillance, are efficiently exported in the cytoplasm in order to be translated, and thus make possible the progress toward the later events of the virus life cycles.

Núcleo Celular , RNA Viral , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
Methods Mol Biol ; 2166: 413-429, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710423


Polyethylene glycol transfection of plant protoplasts represents an efficient method to incorporate foreign DNA and study transient gene expression. Here, we describe an optimized protocol to deliver small noncoding RNAs into Arabidopsis thaliana protoplasts. An example of application is provided by demonstrating the incorporation of a 20 nt long small noncoding RNA deriving from the 5' extremity of an A. thaliana cytosolic alanine tRNA into freshly isolated protoplasts.

Arabidopsis/genética , Protoplastos/metabolismo , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Transfecção/métodos , Alanina/genética , RNA de Transferência/genética
PLoS One ; 12(12): e0189062, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29253877


Cauliflower mosaic virus (CaMV) TAV protein (TransActivator/Viroplasmin) plays a pivotal role during the infection cycle since it activates translation reinitiation of viral polycistronic RNAs and suppresses RNA silencing. It is also the major component of cytoplasmic electron-dense inclusion bodies (EDIBs) called viroplasms that are particularly evident in cells infected by the virulent CaMV Cabb B-JI isolate. These EDIBs are considered as virion factories, vehicles for CaMV intracellular movement and reservoirs for CaMV transmission by aphids. In this study, focused on different TAV mutants in vivo, we demonstrate that three physically separated domains collectively participate to the formation of large EDIBs: the N-terminal EKI motif, a sequence of the MAV domain involved in translation reinitiation and a C-terminal region encompassing the zinc finger. Surprisingly, EKI mutant TAVm3, corresponding to a substitution of the EKI motif at amino acids 11-13 by three alanines (AAA), which completely abolished the formation of large viroplasms, was not lethal for CaMV but highly reduced its virulence without affecting the rate of systemic infection. Expression of TAVm3 in a viral context led to formation of small irregularly shaped inclusion bodies, mild symptoms and low levels of viral DNA and particles accumulation, despite the production of significant amounts of mature capsid proteins. Unexpectedly, for CaMV-TAVm3 the formation of viral P2-containing electron-light inclusion body (ELIB), which is essential for CaMV aphid transmission, was also altered, thus suggesting an indirect role of the EKI tripeptide in CaMV plant-to-plant propagation. This important functional contribution of the EKI motif in CaMV biology can explain the strict conservation of this motif in the TAV sequences of all CaMV isolates.

Brassica napus/virologia , Caulimovirus/metabolismo , Caulimovirus/patogenicidade , Transativadores/química , Transativadores/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Caulimovirus/ultraestrutura , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/ultraestrutura , Proteínas Mutantes/metabolismo , Fenótipo , Domínios Proteicos , Protoplastos/metabolismo , Transcrição Reversa/genética , Relação Estrutura-Atividade , Virulência , Replicação Viral