Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
J Hazard Mater ; : 124463, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33189468

RESUMO

Hydrogels have been studied quite intensively in recent decades regarding whether their metal adsorption abilities may be modified or even enhanced via functionalization (i.e., functionalizing the surfaces of hydrogels with specific functional groups). Studies have found that functionalizing hydrogels can in fact give them higher adsorptive power. This enhanced adsorptive performance is articulated in this paper through critically reviewing more than 120 research articles in such terms as the various techniques of synthesizing functionalized hydrogels, the roles that specific functional groups play on adsorption performance, selectivity, reusability, as well as on adsorption mechanism. Moreover, this critical review offers insight into future designs of functionalized hydrogels with specific metal adsorption capabilities.

2.
Med Hypotheses ; 145: 110320, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33032170

RESUMO

Several studies have described unusually high incidence of vascular thrombosis in coronavirus disease-2019 (COVID-19) patients. Pathogenesis of the vascular thrombosis in COVID-19 is least understood for now and presents a challenge to the treating physicians. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative pathogen for COVID-19, has been shown to bind to angiotensin converting enzyme 2 (ACE2) protein in human epithelial cells which facilitates its entry in the organ and mediate tissue specific pathogenesis. For ACE2 mediated cell entry of the SARS-CoV-2, co-expression of one more protein-Transmembrane protease serine 2 (TMPRSS2) is essential. Existing studies suggested significant expression of ACE2 and TMPRSS2 in human vascular endothelium. Vascular endothelial dysfunction can potentially activate coagulation cascade eventually resulting in thrombosis. ACE2 has proven role in the maintenance of endothelial integrity inside the vessels. Existing in situ evidence for SARS-CoV-1 (the causative agent for SARS pandemic of 2002, which shared ACE2 as cell entry receptor) suggested that virus binding can downregulate ACE2, thus can induce endothelial dysfunction. Recently, in situ evidence has been presented that SARS-CoV-2 can infect cells in engineered human vascular endothelium, which can be effectively blocked by using clinical-grade recombinant human ACE2. Based on the circumstantial evidence present in the literature, we propose a SARS-CoV-2 cell entry receptor ACE2 based mechanism for vascular thrombosis in COVID-19 patients.

3.
J Child Neurol ; : 883073820968995, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33112694

RESUMO

Since the first reports of SARS-CoV-2 infection from China, multiple studies have been published regarding the epidemiologic aspects of COVID-19 including clinical manifestations and outcomes. The majority of these studies have focused on respiratory complications. However, recent findings have highlighted the systemic effects of the virus, including its potential impact on the nervous system. Similar to SARS-CoV-1, cellular entry of SARS-CoV-2 depends on the expression of ACE2, a receptor that is abundantly expressed in the nervous system. Neurologic manifestations in adults include cerebrovascular insults, encephalitis or encephalopathy, and neuromuscular disorders. However, the presence of these neurologic findings in the pediatric population is unclear. In this review, the potential neurotropism of SARS-CoV-2, known neurologic manifestations of COVID-19 in children, and management of preexisting pediatric neurologic conditions during the COVID-19 pandemic are discussed.

4.
Int Rev Immunol ; : 1-18, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33111578

RESUMO

Lack of standardized therapeutic approaches is arguably the significant contributor to the high burden of mortality observed in the ongoing pandemic of the Coronavirus disease, 2019 (COVID-19). Evidence is accumulating on SARS-CoV-2 specific immune cell dysregulation and consequent tissue injury in COVID-19. Currently, no definite drugs or vaccines are available against the disease; however initial results of the ongoing clinical trials have raised some hope. In this article, taking insights from the emerging empirical evidence about host-virus interactions, we deliberate upon plausible pathogenic mechanisms and suitable therapeutic approaches for COVID-19.

5.
J Clin Neurosci ; 79: 241-245, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33070904

RESUMO

One of the major concerns of the health care community and the public surrounding the SARS-CoV-2 pandemic is the availability and use of ventilators. Unprecedented surges of patients presented to intensive care units across the country, with older adults making up a large proportion of the patient population. This paper illustrates contemporary approaches to critical illness myopathy (CIM), critical illness polyneuropathy (CIP), and critical illness polyneuromyopathy (CIPNM) in older patients, including incidence, risk factors, mechanisms for pathology, diagnosis, contemporary treatment approaches, and outcomes. We hope that the following analysis may help educate clinicians and ultimately decrease the duration of the mechanical ventilation required by these patients, resulting in improved clinical outcomes and an increase in ventilator availability for other patients in need.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Doenças Musculares/etiologia , Pneumonia Viral/complicações , Polineuropatias/etiologia , Animais , Infecções por Coronavirus/terapia , Estado Terminal , Humanos , Pandemias , Pneumonia Viral/terapia , Respiração Artificial , Fatores de Risco
6.
Zoo Biol ; 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034084

RESUMO

The article is presenting a bioinformatics based method predicting susceptibility for SARS-CoV-2 infection in domestic and wildlife animals. Recently, there were reports of cats and ferrets, dogs, minks, golden hamster, rhesus monkeys, tigers, and lions testing for SARS-CoV-2 RNA which indicated for the possible interspecies viral transmission. Our method successfully predicted the susceptibility of these animals for contracting SARS-CoV-2 infection. This method can be used as a screening tool for guiding viral RNA testing for domestic and wildlife animals at risk of getting COVID-19. We provide a list of the animals at risk of developing COVID-19 based on the susceptibility score.

7.
J Med Virol ; 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33085084

RESUMO

The paucity of knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific virulence factors has greatly hampered the therapeutic management of patients with coronavirus disease 2019 (COVID-19). Recently, a cluster of studies appeared, which presented empirical evidence for SARS-CoV-2-specific virulence factors that can explain key elements of COVID-19 pathology. These studies unravel multiple structural and nonstructural specifics of SARS-CoV-2, such as a unique FURIN cleavage site, papain-like protease (SCoV2-PLpro), ORF3b and nonstructural proteins, and dynamic conformational changes in the structure of spike protein during host cell fusion, which give it an edge in infectivity and virulence over previous coronaviruses causing pandemics. Investigators provided robust evidence that SARS-CoV-2-specific virulence factors may have an impact on viral infectivity and transmissibility and disease severity as well as the development of immunity against the infection, including response to the vaccines. In this article, we are presenting a summarized account of the newly reported studies.

8.
Phys Chem Chem Phys ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33089851

RESUMO

Quantum simulations of electronic structure with a transformed Hamiltonian that includes some electron correlation effects are demonstrated. The transcorrelated Hamiltonian used in this work is efficiently constructed classically, at polynomial cost, by an approximate similarity transformation with an explicitly correlated two-body unitary operator. This Hamiltonian is Hermitian, includes no more than two-particle interactions, and is free of electron-electron singularities. We investigate the effect of such a transformed Hamiltonian on the accuracy and computational cost of quantum simulations by focusing on a widely used solver for the Schrödinger equation, namely the variational quantum eigensolver method, based on the unitary coupled cluster with singles and doubles (q-UCCSD) Ansatz. Nevertheless, the formalism presented here translates straightforwardly to other quantum algorithms for chemistry. Our results demonstrate that a transcorrelated Hamiltonian, paired with extremely compact bases, produces explicitly correlated energies comparable to those from much larger bases. For the chemical species studied here, explicitly correlated energies based on an underlying 6-31G basis had cc-pVTZ quality. The use of the very compact transcorrelated Hamiltonian reduces the number of CNOT gates required to achieve cc-pVTZ quality by up to two orders of magnitude, and the number of qubits by a factor of three.

9.
Cancer Rep (Hoboken) ; : e1300, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026185

RESUMO

BACKGROUND: The pathophysiology of the breast phyllodes tumors is uncertain. Currently, wide surgical removal is the only available treatment option. The histopathological diagnosis of phyllodes tumors is often confused with that of fibroadenomas due to a striking histological resemblance. AIM: To identify a distinctive biomarker for phyllodes tumors of the breast. METHODS AND RESULTS: Fresh human breast tissue was obtained from surgically excised breast phyllodes and fibroadenoma tumors (test), breast cancer (positive control) and normal breast tissue (negative control). Immunohistochemistry and Sandwich ELISA were performed for the detection of nerve growth factor (NGF) in test and control tissues. A marked difference in NGF expression was detected in phyllodes tumors compared to fibroadenomas. The maximum NGF expression was observed in phyllodes tissue followed by cancer tissue, and the least expression in fibroadenomas (3-5 times less than in phyllodes; comparable with normal breast tissue). CONCLUSION: NGF secretion by a benign breast tumor is not known in literature. This study reports abundant NGF secretion by breast phyllodes, raising the possibility of its potential role in tumor pathogenesis and progression that can be exploited therapeutically. Additionally, NGF may be used as a distinct biomarker of phyllodes tumors, for differentiating them from fibroadenomas during histopathology.

10.
J Neurosci Res ; 98(12): 2376-2383, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32869376

RESUMO

Manifestation of neurological symptoms in certain patients of coronavirus disease-2019 (COVID-19) has warranted for their virus-induced etiogenesis. SARS-CoV-2, the causative agent of COVID-19, belongs to the genus of betacoronaviruses which also includes SARS-CoV-1 and MERS-CoV; causative agents for severe acute respiratory syndrome (SARS) in 2002 and Middle East respiratory syndrome (MERS) in 2012, respectively. Studies demonstrating the neural invasion of SARS-CoV-2 in vivo are still scarce, although such characteristics of certain other betacoronaviruses are well demonstrated in the literature. Based on the recent evidence for the presence of SARS-CoV-2 host cell entry receptors in specific components of the human nervous and vascular tissue, a neural (olfactory and/or vagal), and a hematogenous-crossing the blood-brain barrier, routes have been proposed. The neurological symptoms in COVID-19 may also arise as a consequence of the "cytokine storm" (characteristically present in severe disease) induced neuroinflammation, or co-morbidities. There is also a possibility that, there may be multiple routes of SARS-CoV-2 entry into the brain, or multiple mechanisms can be involved in the pathogenesis of the neurological symptoms. In this review article, we have discussed the possible routes of SARS-CoV-2 brain entry based on the emerging evidence for this virus, and that available for other betacoronaviruses in literature.


Assuntos
Betacoronavirus/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Infecções por Coronavirus/metabolismo , Doenças do Sistema Nervoso/metabolismo , Nervo Olfatório/metabolismo , Pneumonia Viral/metabolismo , Animais , Barreira Hematoencefálica/virologia , Encéfalo/virologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/transmissão , Humanos , Doenças do Sistema Nervoso/etiologia , Nervo Olfatório/virologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/transmissão
11.
Reprod Domest Anim ; 55(11): 1619-1628, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920930

RESUMO

Sperm cells perform precise chemotactic and thermotactic movement which is crucial for fertilization. However, the key molecules involved in detection of different chemical and physical stimuli which guide the sperm during navigation are not well understood. Ca2+ -signalling mediated by ion channels seem to play important role in motility and other fertility parameters. In this work, we explored the endogenous localization pattern of TRPV channels in the mature spermatozoa of avian species. Using sperm from white pekin duck (Anas platyrhynchos) as the representative avian model, we demonstrate that duck sperm endogenously express the thermosensitive channels TRPV1, TRPV2, TRPV3, TRPV4, and highly Ca2+ -selective channels TRPV5 and TRPV6 in specific yet differential locations. All of these TRPV channels are enriched in the sperm tail, indicating their relevance in sperm motility. Interestingly, the TRPV3 and TRPV4 channels are present in the mitochondrial region. Calcium selective TRPV5 channel is exclusively present in sperm tail and is most abundant among the TRPV channels. This is the first report describing the endogenous presence of TRPV2 and TRPV3 channels in the sperm of any species. Using confocal imaging and super-resolution imaging, we demonstrate that though the TRPV channels are evolutionarily closely related, they have distinct localization pattern in the duck sperm, which could impact their role in fertilization.

12.
Elife ; 92020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32930093

RESUMO

Maintenance of skeletal muscle is beneficial in obesity and Type 2 diabetes. Mechanical stimulation can regulate skeletal muscle differentiation, growth and metabolism; however, the molecular mechanosensor remains unknown. Here, we show that SWELL1 (Lrrc8a) functionally encodes a swell-activated anion channel that regulates PI3K-AKT, ERK1/2, mTOR signaling, muscle differentiation, myoblast fusion, cellular oxygen consumption, and glycolysis in skeletal muscle cells. LRRC8A over-expression in Lrrc8a KO myotubes boosts PI3K-AKT-mTOR signaling to supra-normal levels and fully rescues myotube formation. Skeletal muscle-targeted Lrrc8a KO mice have smaller myofibers, generate less force ex vivo, and exhibit reduced exercise endurance, associated with increased adiposity under basal conditions, and glucose intolerance and insulin resistance when raised on a high-fat diet, compared to wild-type (WT) mice. These results reveal that the LRRC8 complex regulates insulin-PI3K-AKT-mTOR signaling in skeletal muscle to influence skeletal muscle differentiation in vitro and skeletal myofiber size, muscle function, adiposity and systemic metabolism in vivo.

13.
Biol Chem ; 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32936782

RESUMO

The aberrant misfolding and self-assembly of human islet amyloid polypeptide (hIAPP)-a hormone that is co-secreted with insulin from pancreatic ß-cells-into toxic oligomers, protofibrils and fibrils has been observed in type 2 diabetes mellitus (T2DM). The formation of these insoluble aggregates has been linked with the death and dysfunction of ß-cells. Therefore, hIAPP aggregation has been identified as a therapeutic target for T2DM management. Several natural products are now being investigated for their potential to inhibit hIAPP aggregation and/or disaggregate preformed aggregates. In this study, we attempt to identify the anti-amyloidogenic potential of Myricetin (MYR)- a polyphenolic flavanoid, commonly found in fruits (like Syzygium cumini). Our results from biophysical studies indicated that MYR supplementation inhibits hIAPP aggregation and disaggregates preformed fibrils into non-toxic species. This protection was accompanied by inhibition of oxidative stress, reduction in lipid peroxidation and the associated membrane damage and restoration of mitochondrial membrane potential in INS-1E cells. MYR supplementation also reversed the loss of functionality in hIAPP exposed pancreatic islets via restoration of glucose-stimulated insulin secretion. Molecular dynamics simulation studies suggested that MYR molecules interact with the hIAPP pentameric fibril model at the amyloidogenic core region and thus prevents aggregation and distort the fibrils.

14.
Cell Rep ; 32(13): 108172, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32997990

RESUMO

Nuclear actin has been elusive due to the lack of knowledge about molecular mechanisms. From actin-containing chromatin remodeling complexes, we discovered an arginine mono-methylation mark on an evolutionarily conserved R256 residue of actin (R256me1). Actin R256 mutations in yeast affect nuclear functions and cause diseases in human. Interestingly, we show that an antibody specific for actin R256me1 preferentially stains nuclear actin over cytoplasmic actin in yeast, mouse, and human cells. We also show that actin R256me1 is regulated by protein arginine methyl transferase-5 (PRMT5) in HEK293 cells. A genome-wide survey of actin R256me1 mark provides a landscape for nuclear actin correlated with transcription. Further, gene expression and protein interaction studies uncover extensive correlations between actin R256me1 and active transcription. The discovery of actin R256me1 mark suggests a fundamental mechanism to distinguish nuclear actin from cytoplasmic actin through post-translational modification (PTM) and potentially implicates an actin PTM mark in transcription and human diseases.

15.
ACS Chem Neurosci ; 11(18): 2836-2848, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32833434

RESUMO

Synucleinopathies are a class of neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA). The common pathological hallmark of synucleinopathies is the filamentous α-synuclein (α-Syn) aggregates along with membrane components in cytoplasmic inclusions in the brain. ß-Synuclein (ß-Syn), an isoform of α-Syn, inhibits α-Syn aggregation and prevents its neurotoxicity, suggesting the neuroprotective nature of ß-Syn. However, this notion changed with the discovery of disease-associated ß-Syn mutations, V70M and P123H, in patients with DLB. It is still unclear how these missense mutations alter the structural and amyloidogenic properties of ß-Syn, leading to neurodegeneration. Here, we characterized the biophysical properties and investigated the effect of mutations on ß-Syn fibrillation under different conditions. V70M and P123H show high membrane binding affinity compared to wild-type ß-Syn, suggesting their potential role in membrane interactions. ß-Syn and its mutants do not aggregate under normal physiological conditions; however, the proteins undergo self-polymerization in a slightly acidic microenvironment and/or in the presence of an inducer, forming long unbranched amyloid fibrils similar to α-Syn. Strikingly, V70M and P123H mutants exhibit accelerated fibrillation compared to native ß-Syn under these conditions. NMR study further revealed that these point mutations induce local perturbations at the site of mutation in ß-Syn. Overall, our data provide insight into the biophysical properties of disease-associated ß-Syn mutations and demonstrate that these mutants make the native protein more susceptible to aggregation in an altered microenvironment.

16.
World Neurosurg ; 144: e149-e155, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32791221

RESUMO

BACKGROUND: Tumors presenting with drug-resistant seizures are termed as long-term epilepsy-associated tumors (LEATs). LEATs are more common in the temporal lobe, occur predominantly in pediatric age, and focal neurological deficits are rare. In this article, we aim to highlight our surgical experience in terms of seizure outcome among LEATs and discuss the factors affecting outcome. METHODOLOGY: We have retrospectively analyzed all the operated cases of intra-axial brain tumors with seizures (2015-2019). The clinical and radiographic data were collected from the hospital record system. For comparison, 2 groups were made (group 1 with good seizure control, i.e., Engel 1; and group 2 poor seizure outcome, i.e., Engel 2 and 3). RESULTS: A total of 51 cases were included; the temporal lobe was the most common location (n = 27); 23 patients had seizure frequency of "more than 1 seizure per week." Focal unaware seizures/complex partial seizures were the most common type of seizures encountered (n = 28). At a mean follow-up of 39.60 months, 38 patients had Engel 1 (78.5%) outcome (35 cases [71.05%] had the seizure duration of ≤2 years). The median duration of symptoms (group 1, 25 months vs. group 2, 65 months) was significantly different (P = 0.002). On comparing patients with seizure duration, we found a statistically significant difference (P < 0.00001). CONCLUSION: A shorter duration of symptoms, younger age of the patient, partial/focal seizures, and gross total excision were predictors of a good seizure outcome. Histopathology of the tumor does not affect the outcome when one compares glioneuronal tumors with non-glioneuronal tumors.

17.
Biol Chem ; 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32845854

RESUMO

The human islet amyloid polypeptide (hIAPP) or amylin, a neuroendocrine peptide hormone, is known to misfold and form amyloidogenic aggregates that have been observed in the pancreas of 90% subjects with Type 2 Diabetes Mellitus (T2DM). Under normal physiological conditions, hIAPP is co-stored and co-secreted with insulin; however, under chronic hyperglycemic conditions associated with T2DM, the overexpression of hIAPP occurs that has been associated with the formation of amyloid deposits; as well as the death and dysfunction of pancreatic ß-islets in T2DM. Hitherto, various biophysical and structural studies have shown that during this process of aggregation, the peptide conformation changes from random structure to helix, then to ß-sheet, subsequently to cross ß-sheets, which finally form left-handed helical aggregates. The intermediates, formed during this process, have been shown to induce higher cytotoxicity in the ß-cells by inducing cell membrane disruption, endoplasmic reticulum stress, mitochondrial dysfunction, oxidative stress, islet inflammation, and DNA damage. As a result, several research groups have attempted to target both hIAPP aggregation phenomenon and the destabilization of preformed fibrils as a therapeutic intervention for T2DM management. In this review, we have summarized structural aspects of various forms of hIAPP viz. monomer, oligomers, proto-filaments, and fibrils of hIAPP. Subsequently, cellular toxicity caused by toxic conformations of hIAPP has been elaborated upon. Finally, the need for performing structural and toxicity studies in vivo to fill in the gap between the structural and cellular aspects has been discussed.

18.
J Neurochem ; 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32750740

RESUMO

Protein aggregation into amyloid fibrils is a key feature of a multitude of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Prion disease. To detect amyloid fibrils, fluorophores with high sensitivity and better efficiency coupled with the low toxicity are in high demand even to date. In this pursuit, we have unveiled two benzimidazole-based fluorescence sensors ([C15 H15 N3 ] (C1) and [C16 H16 N3 O2 ] (C2), which possess exceptional affinity toward different amyloid fibrils in its submicromolar concentration (8 × 10-9  M), whereas under a similar concentration, the gold standard Thioflavin-T (ThT) fails to bind with amyloid fibrils. These fluorescent markers bind to α-Syn amyloid fibrils as well as amyloid fibrils forming other proteins/peptides including Aß42 amyloid fibrils. The 1 H-15 N heteronuclear quantum correlation spectroscopy nuclear magnetic resonance data collected on wild-type α-Syn monomer with and without the fluorophores (C1 and C2) reveal that there is weak or no interactions between C1 or C2 with residues in α-Syn monomer, which indirectly reflects the specific binding ability of C1 and C2 to the α-Syn amyloid fibrils. Detailed studies further suggest that C1 and C2 can detect/bind with the α-Syn amyloid fibril as low as 100 × 10-9  M. Extremely low or no cytotoxicity is observed for C1 and C2 and they do not interfere with α-Syn fibrillation kinetics, unlike ThT. Both C1/C2 not only shows selective binding with amyloid fibrils forming various proteins/peptides but also displays excellent affinity and selectivity toward α-Syn amyloid aggregates in SH-SY5Y cells and Aß42 amyloid plaques in animal brain tissues. Overall, our data show that the developed dyes could be used for the detection of amyloid fibrils including α-Syn and Aß42 amyloids with higher sensitivity as compared to currently used ThT.

20.
J Clin Pathol ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817204

RESUMO

BACKGROUND: Coronavirus disease-2019 (COVID-19) has caused a great global threat to public health. The World Health Organization (WHO) has declared COVID-19 disease as a pandemic, affecting the human respiratory and other body systems, which urgently demands for better understanding of COVID-19 histopathogenesis. OBJECTIVE: Data on pathological changes in different organs are still scarce, thus we aim to review and summarise the latest histopathological changes in different organs observed after autopsy of COVID-19 cases. MATERIALS AND METHODS: Over the period of 3 months, authors performed vast review of the articles. The search engines included were PubMed, Medline (EBSCO & Ovid), Google Scholar, Science Direct, Scopus and Bio-Medical. Search terms used were 'Histopathology in COVID-19', 'COVID-19', 'Pathological changes in different organs in COVID-19' or 'SARS-CoV-2'. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guidelines were used for review writing. RESULT: We identified various articles related to the histopathology of various organs in COVID-19 positive patients. Overall, 45 articles were identified as full articles to be included in our study. Histopathological findings observed are summarised according to the systems involved. CONCLUSION: Although COVID-19 mainly affects respiratory and immune systems, but other systems like cardiovascular, urinary, gastrointestinal tract, reproductive system, nervous system and integumentary system are not spared, especially in elderly cases and those with comorbidity. This review would help clinicians and researchers to understand the tissue pathology, which can help in better planning of the management and avoiding future risks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA