Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 399: 122949, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32502856

RESUMO

Designing nanostructured silicon, such as in the form of nanoparticles, wires, and porous structures, for high-performance Li-ion electrodes, has progressed significantly. These approaches have largely overcome the capacity fading of silicon electrodes from volume expansion during lithiation/de-lithiation. However, they involve high costs, complex processes, and hazardous precursors. Herein, we propose an electrochemical fabrication of silicon nanowires from waste rice husks via a molten salt process based on electrodeoxidation. The addition of NiO as an electric conductor improved the production efficiency and created pores in the nanowires after washing. The electrically produced high-purity silicon yielded high capacity, and the nanowires provided sufficient free volume to accommodate silicon electrode expansion, resulting in improved cycle life. The converted silicon nanowires from the molten salt process will help develop sustainable energy storage materials.

2.
Environ Res ; 176: 108424, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31229777

RESUMO

The generation of reactive oxygen species (ROS) during the photolysis of sunscreens and sun blockers poses consumer safety concerns while necessitating proper identification and quantitation of ROS species. Here, a colorimetric sensing approach has been developed based on a molecular probe (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2-H-tetrazolium-5-carboxanilide (XTT) tetrazolium salt) to quantitatively measure the photo-induced superoxide anion radicals (O2.) generated from the photocatalysis of zinc oxide nanoparticles (ZnO-NPs) in aqueous solutions. Note that superoxide anion radicals are assumed to be the main reactive oxygen species (ROS) generated from such photocatalysis. The characterisation of ZnO-NPs before and after irradiation showed average particle sizes of 616.5 and 295.3 nm and ζ-potential values of 0 and -24.4 mV, respectively. It is hoped that this proposed protocol can be further developed to efficiently detect other ROS present in inorganic sun blockers and to optimize the utility of various sunscreen formulations.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Sobrevivência Celular , Monitoramento Ambiental , Nanopartículas Metálicas/análise , Sondas Moleculares , Espécies Reativas de Oxigênio , Superóxidos
3.
Nat Commun ; 10(1): 1340, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902984

RESUMO

Geometric or electronic confinement of guests inside nanoporous hosts promises to deliver unusual catalytic or opto-electronic functionality from existing materials but is challenging to obtain particularly using metastable hosts, such as metal-organic frameworks (MOFs). Reagents (e.g. precursor) may be too large for impregnation and synthesis conditions may also destroy the hosts. Here we use thermodynamic Pourbaix diagrams (favorable redox and pH conditions) to describe a general method for metal-compound guest synthesis by rationally selecting reaction agents and conditions. Specifically we demonstrate a MOF-confined RuO2 catalyst (RuO2@MOF-808-P) with exceptionally high catalytic CO oxidation below 150 °C as compared to the conventionally made SiO2-supported RuO2 (RuO2/SiO2). This can be caused by weaker interactions between CO/O and the MOF-encapsulated RuO2 surface thus avoiding adsorption-induced catalytic surface passivation. We further describe applications of the Pourbaix-enabled guest synthesis (PEGS) strategy with tutorial examples for the general synthesis of arbitrary guests (e.g. metals, oxides, hydroxides, sulfides).

4.
Nanomaterials (Basel) ; 9(3)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866508

RESUMO

In the published paper [¹], there was a typo error mistake in Equation (5), which was supposed to be expressed as " log Z t + n log t = log K T - m log Φ " instead of "log Zt + n log t = log KT - ml" [...].

5.
Nanomaterials (Basel) ; 9(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669270

RESUMO

The effect of carbon black (CB) and microwave-induced plasma graphene (g) on the crystallisation kinetics of the multimodal high-density polyethylene was studied under non-isothermal conditions. The non-isothermal crystallisation behaviour of the multimodal-high-density polyethylene (HDPE), containing up to 5 wt.% graphene, was compared with that of neat multimodal-HDPE and its carbon black based nanocomposites. The results suggested that the non-isothermal crystallisation behaviour of polyethylene (PE)-g nanocomposites relied significantly on both the graphene content and the cooling rate. The addition of graphene caused a change in the mechanism of the nucleation and the crystal growth of the multimodal-HDPE, while carbon black was shown to have little effect. Combined Avrami and Ozawa equations were shown to be effective in describing the non-isothermal crystallisation behaviour of the neat multimodal-HDPE and its nanocomposites. The mean activation energy barrier (ΔE), required for the transportation of the molecular chains from the melt state to the growing crystal surface, gradually diminished as the graphene content increased, which is attributable to the nucleating agent effect of graphene platelets. On the contrary, the synergistic effect resulting from the PE-CB nanocomposite decreased the ΔE of the neat multimodal-HDPE significantly at the lowest carbon black content.

6.
J Am Chem Soc ; 140(19): 6130-6136, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29685030

RESUMO

Three-dimensional carbon-based structures have proven useful for tailoring material properties in structural mechanical and energy storage applications. One approach to obtain them has been by carbonization of selected metal-organic frameworks (MOFs) with catalytic metals, but this is not applicable to most common MOF structures. Here, we present a strategy to transform common MOFs, by guest inclusions and high-temperature MOF-guest interactions, into complex carbon-based, diatom-like, hierarchical structures (named for the morphological similarities with the naturally existing diatomaceous species). As an example, we introduce metal salt guests into HKUST-1-type MOFs to generate a family of carbon-based nano-diatoms with two to four levels of structural hierarchy. We report control of the morphology by simple changes in the chemistry of the MOF and guest, with implications for the formation mechanisms. We demonstrate that one of these structures has unique advantages as a fast-charging lithium-ion battery anode. The tunability of composition should enable further studies of reaction mechanisms and result in the growth of a myriad of unprecedented carbon-based structures from the enormous variety of currently available MOF-guest candidates.

7.
ACS Appl Mater Interfaces ; 10(7): 6199-6206, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272102

RESUMO

Although many existing hybrid energy storage systems demonstrate promising electrochemical performances, imbalances between the energies and kinetics of the two electrodes must be resolved to allow their widespread commercialization. As such, the development of a new class of energy storage systems is a particular challenge, since future systems will require a single device to provide both a high gravimetric energy and a high power density. In this context, we herein report the design of novel lithium-sulfur capacitors. The resulting asymmetric systems exhibited energy densities of 23.9-236.4 Wh kg-1 and power densities of 72.2-4097.3 W kg-1, which are the highest reported values for an asymmetric system to date. This approach involved the use of a prelithiated anode and a hybrid cathode material exhibiting anion adsorption-desorption in addition to the electrochemical reduction and oxidation of sulfur at almost identical rates. This novel strategy yielded both high energy and power densities, and therefore establishes a new benchmark for hybrid systems.

8.
ACS Energy Lett ; 2(9): 2014-2020, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-29104940

RESUMO

Conducting polymers show great promise as supercapacitor materials due to their high theoretical specific capacitance, low cost, toughness, and flexibility. Poor ion mobility, however, can render active material more than a few tens of nanometers from the surface inaccessible for charge storage, limiting performance. Here, we use semi-interpenetrating networks (sIPNs) of a pseudocapacitive polymer in an ionically conductive polymer matrix to decrease ion diffusion length scales and make virtually all of the active material accessible for charge storage. Our freestanding poly(3,4-ethylenedioxythiophene)/poly(ethylene oxide) (PEDOT/PEO) sIPN films yield simultaneous improvements in three crucial elements of supercapacitor performance: specific capacitance (182 F/g, a 70% increase over that of neat PEDOT), cycling stability (97.5% capacitance retention after 3000 cycles), and flexibility (the electrodes bend to a <200 µm radius of curvature without breaking). Our simple and controllable sIPN fabrication process presents a framework to develop a range of polymer-based interpenetrated materials for high-performance energy storage technologies.

9.
Sci Rep ; 7(1): 15171, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123224

RESUMO

A novel red-emitting phosphor NaY9(SiO4)6O2:Sm3+ (NYS:Sm3+) was synthesized and the X-ray diffraction and high-resolution TEM testified that the NYS compound belongs to the apatite structure which crystallized in a hexagonal unit cell with space group P63/m. The novel phosphor boasts of such three advantageous properties as perfect compatible match with the commercial UV chips, 73.2% quantum efficiency and 90.9% thermal stability at 150 °C. Details are as follows. NYS:Sm3+ phosphor showed obvious absorption in the UV regions centered at 407 nm, which can be perfectly compatible with the commercial UV chips. The property investigations showed that NYS:Sm3+ phosphor emitted reddish emission with CIE coordination of (0.563, 0.417). The optimum quenching concentration of Sm3+ in NYS phosphor was about 10%mol, and the corresponding concentration quenching mechanism was verified to be the electric dipole-dipole interaction. Upon excitation at 407 nm, the composition-optimized NYS:0.10Sm3+ exhibited a high quantum efficiency of 73.2%, and its luminescence intensity at 150 °C decreased simply to 90.9% of the initial value at room temperature. All of the results indicated that NYS:Sm3+ is a promising candidate as a reddish-emitting UV convertible phosphor for application in white light emitting diodes (w-LEDs).

10.
Sci Rep ; 7: 45344, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345612

RESUMO

Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.

11.
ACS Appl Mater Interfaces ; 8(9): 6004-10, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26881823

RESUMO

It still remains very challenging to design proper heterostructures to enhance the electrochemical performance of transition metal oxide-based anode materials for lithium-ion batteries. Here, we synthesized the NiCoO2 nanosheets@SnO2 layer heterostructure supported by amorphous carbon nanotubes (ACNTs) which is derived from polymeric nanotubes (PNTs) by a stepwise method. The inner SnO2 layer not only provides a considerable capacity contribution but also produces the extra Li2O to promote the charge process of NiCoO2 and thus results in a rising cycling performance. Combining with the contribution of ACNTs backbone and ultrathin NiCoO2 nanosheets, the specific capacities of these one-dimensional nanostructures show an interesting gradually increasing trend even after 100 cycles at 400 mA g(-1) with a final result of 1166 mAh g(-1). This approach can be an efficient general strategy for the preparation of mixed-metal-oxide one-dimensional nanostructures and this innovative design of hybrid electrode materials provides a promising approach for batteries with improved electrochemical performance.

12.
ACS Appl Mater Interfaces ; 7(43): 23885-92, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26470838

RESUMO

Sulfur is an attractive cathode material in energy storage devices due to its high theoretical capacity of 1672 mAh g(-1). However, practical application of lithium-sulfur (Li-S) batteries can be achieved only when the major barriers, including the shuttling effect of polysulfides (Li2Sx, x = 3-8), significant volume change (∼80%), and the resultant rapid deterioration of electrodes, are tackled. Here, we propose an "inside-out" synthesis strategy by mimicking the structure of the pomegranate fruit to achieve conductive confinement of sulfur to address these issues. In the proposed pomegranate-like structure, sulfur and carbon nanotubes composite is encapsulated by the in situ formed amorphous carbon network, which allows the regeneration of electroactive material sulfur and the confinement of the sulfur as well as the lithium polysulfide within the electrical conductive carbon network. Consequently, a highly robust sulfur cathode is obtained, delivering remarkable performance in a Li-S battery. The obtained composite cathode shows a reversible capacity of 691 mAh g(-1) after 200 cycles with impressive cycle stability at the current density of 1600 mA g(-1).

13.
Faraday Discuss ; 183: 369-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26391815

RESUMO

The utilisation of Mg(OH)2 to capture exhaust CO2 has been hindered by the limited availability of brucite, the Mg(OH)2 mineral in natural deposits. Our previous study demonstrated that Mg(OH)2 can be obtained from dunite, an ultramafic rock composed of Mg silicate minerals, in highly concentrated NaOH aqueous systems. However, the large quantity of NaOH consumed was considered an obstacle for the implementation of the technology. In the present study, Mg(OH)2 was extracted from dunite reacted in solid systems with NaOH assisted with H2O. The consumption of NaOH was reduced by 97% with respect to the NaOH aqueous systems, maintaining a comparable yield of Mg(OH)2 extraction, i.e. 64.8-66%. The capture of CO2 from a CO2-N2 gas mixture was tested at ambient conditions using a Mg(OH)2 aqueous slurry. Mg(OH)2 almost fully dissolved and reacted with dissolved CO2 by forming Mg(HCO3)2 which remained in equilibrium storing the CO2 in the aqueous solution. The CO2 balance of the process was assessed from the emissions derived from the power consumption for NaOH production and Mg(OH)2 extraction together with the CO2 captured by Mg(OH)2 derived from dunite. The process resulted as carbon neutral when dunite is reacted at 250 °C for durations of 1 and 3 hours and CO2 is captured as Mg(HCO3)2.

14.
ACS Appl Mater Interfaces ; 6(24): 22096-107, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25403150

RESUMO

Intrinsically electrically semiconducting microparticles of semiladder poly(m-phenylenediamine-co-2-hydroxy-5-sulfonic aniline) structures containing abundant functional groups, like -NH-, -N=, -NH2, -OH, -SO3H as complexation sites, were efficiently synthesized by chemical oxidative copolymerization of m-phenylenediamine and 2-hydroxy-5-sulfonic aniline. The obtained copolymers were found to be nonporous spherical microparticles that were able to achieve greater π-conjugated structure, smaller particle aggregate size, and stronger interaction with Pb(II) ions than poly(m-phenylenediamine) containing only -NH-, -N=, and -NH2. A potentiometric Pb(II) sensor was fabricated on the basis of the copolymer microparticles as a crucial solid ionophore component within plasticized PVC. The sensor exhibited a Nernstian response to Pb(II) ions over a wide concentration range, together with a fast response, a wide pH range capability, a long lifetime of up to 5 months, and good selectivity over a wide variety of other ions and redox species. The process for synthesizing the microparticles and fabricating the Pb(II)-sensor can be facilely scaled-up for use in the straightforward long-term online monitoring of Pb(II) ions in heavily polluted wastewaters. This study develops an understanding of the facile synthesis of conducting microparticles bearing many functional groups and their structures governing the potentiometric susceptibility toward interaction between Pb(II) ions and the microparticles for fabricating robust long-lived Pb(II)-sensor, signifying the potential suitability of such novel materials for inexpensive sensitive detection of Pb(II) ions.

15.
Nanoscale ; 6(11): 5746-53, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24658177

RESUMO

A novel ultra-lightweight three-dimensional (3-D) cathode system for lithium sulphur (Li-S) batteries has been synthesised by loading sulphur on to an interconnected 3-D network of few-layered graphene (FLG) via a sulphur solution infiltration method. A free-standing FLG monolithic network foam was formed as a negative of a Ni metallic foam template by CVD followed by etching away of Ni. The FLG foam offers excellent electrical conductivity, an appropriate hierarchical pore structure for containing the electro-active sulphur and facilitates rapid electron/ion transport. This cathode system does not require any additional binding agents, conductive additives or a separate metallic current collector thus decreasing the weight of the cathode by typically ∼20-30 wt%. A Li-S battery with the sulphur-FLG foam cathode shows good electrochemical stability and high rate discharge capacity retention for up to 400 discharge/charge cycles at a high current density of 3200 mA g(-1). Even after 400 cycles the capacity decay is only ∼0.064% per cycle relative to the early (e.g. the 5th cycle) discharge capacity, while yielding an average columbic efficiency of ∼96.2%. Our results indicate the potential suitability of graphene foam for efficient, ultra-light and high-performance batteries.

16.
Appl Spectrosc ; 67(7): 779-88, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23816131

RESUMO

Raman spectroscopy can be used to assess the structure of naturally occurring carbonaceous materials (CM), which exist in a wide range of crystal structures. The sources of these geological and environmental materials include rocks, soils, river sediments, and marine sediment cores, all of which can contain carbonaceous material ranging from highly crystalline graphite to amorphous-like organic compounds. In order to fully characterize a geological sample and its intrinsic heterogeneity, several spectra must be collected and analyzed in a precise and repeatable manner. Here, we describe a suitable processing and analysis technique. We show that short-period ball-mill grinding does not introduce structural changes to semi-graphitized material and allows for easy collection of Raman spectra from the resulting powder. Two automated peak-fitting procedures are defined that allow for rapid processing of large datasets. For very disordered CM, Lorentzian profiles are fitted to five characteristic peaks, for highly graphitized material, three Voigt profiles are fitted. Peak area ratios and peak width measurements are used to classify each spectrum and allow easy comparison between samples. By applying this technique to samples collected in Taiwan after Typhoon Morakot, sources of carbon to offshore sediments have been identified. Carbon eroded from different areas of Taiwan can be seen mixed and deposited in the offshore flood sediments, and both graphite and amorphous-like carbon have been recycled from terrestrial to marine deposits. The practicality of this application illustrates the potential for this technique to be deployed to sediment-sourcing problems in a wide range of geological settings.


Assuntos
Algoritmos , Carbono/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Reconhecimento Automatizado de Padrão/métodos , Análise Espectral Raman/métodos , Pós
17.
Int J Environ Health Res ; 23(5): 407-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23557380

RESUMO

This research aimed to investigate in vitro photocatalytic bactericidal effect of Ag-TiO2 nanocomposite using Escherichia coli as a model organism. Highly dispersed, Ag-TiO2 nanocomposite is used with an average particle size of less than 20 nm. Bactericidal analysis was carried out in Luria Bertani medium on solid agar plates with various illumination time and different concentrations of Ag-TiO2 nanocomposite. Transmission electron microscopic analysis of bacterial section was used to detect the effect of irradiation of Ag-TiO2 nanocomposite on the ultra structure of the bacterial cell in order to reveal possible cellular damage. The mechanism underlying the action of photoexcited Ag-TiO2 nanocomposite on E. coli cell membrane is also evaluated. The results confirmed that E. coli cells after the contact with Ag-TiO2 nanocomposite were damaged since they showed membrane disorganization. This causes the enhanced level of membrane permeability leading to the build-up of Ag-TiO2 nanocomposite in the bacterial membrane and also cellular internalization of these nanoparticles.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanocompostos/análise , Prata/farmacologia , Titânio/farmacologia , Antibacterianos/química , Catálise , Relação Dose-Resposta a Droga , Microscopia Eletrônica de Transmissão , Fotólise , Prata/química , Titânio/química
18.
J Hazard Mater ; 250-251: 387-96, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23500418

RESUMO

A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting methods, is proposed for treating components of spent lead-acid battery pastes in aqueous organic acid(s). In this study, PbO, PbO2, and PbSO4, the three major components in a spent lead paste, were individually reacted with a mixture of aqueous sodium citrate and acetic acid solution. Pure lead citrate precursor of Pb3(C6H5O7)2 · 3H2O is the only product crystallized in each leaching experiment. Conditions were optimized for individual lead compounds which were then used as the basis for leaching real industrial spent paste. In this work, efficient leaching process is achieved and raw material cost is reduced by using aqueous sodium citrate and acetic acid, instead of aqueous sodium citrate and citric acid as reported in a pioneering hydrometallurgical method earlier. Acetic acid is not only cheaper than citric acid but is also more effective in aiding dissolution of the lead compounds thus speeding up the leaching process in comparison with citric acid. Lead citrate is readily crystallized from the aqueous solution due to its low solubility and can be combusted to directly produce leady oxide as a precursor for making new battery pastes.


Assuntos
Ácido Acético/química , Citratos/química , Fontes de Energia Elétrica , Poluição Ambiental , Substâncias Perigosas , Resíduos Industriais , Chumbo/química , Óxidos/química , Citrato de Sódio , Solubilidade , Eliminação de Resíduos Líquidos/métodos , Difração de Raios X
19.
Chem Commun (Camb) ; 49(22): 2192-4, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23396518

RESUMO

This paper presents a novel method and rationale for utilizing carbonized MOFs for sulphur loading to fabricate cathode structures for lithium-sulphur batteries. Unique carbon materials with differing hierarchical pore structures were synthesized from four types of zinc-containing metal-organic frameworks (MOFs). It is found that cathode materials made from MOFs-derived carbons with higher mesopore (2-50 nm) volumes exhibit increased initial discharge capacities, whereas carbons with higher micropore (<2 nm) volumes lead to cathode materials with better cycle stability.

20.
Langmuir ; 28(12): 5427-31, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22339438

RESUMO

We present a straightforward method to produce highly crystalline, vertically oriented TiO(x)N(y) nanopillars (up to 1 µm in length) with a band gap in the visible-light region. This process starts with reactive dc sputtering to produce a TiN porous film, followed by a simple oxidation process at elevated temperatures in oxygen or air. By controlling the oxidation conditions, the band gap of the prepared TiO(x)N(y) can be tuned to different wavelength within the range of visible light. Furthermore, in order to inhibit carrier recombination to enhance the photocatalytic activity, Ag nanoparticles have been embedded into the nanogaps between the TiO(x)N(y) pillars by photoinduced reduction of Ag(+) (aq) irradiated with visible light. Transmission electron microscopy reveals that the Ag nanoparticles with a diameter of about 10 nm are uniformly dispersed along the pillars. The prepared TiO(x)N(y) nanopillar matrix and Ag:TiO(x)N(y) network show strong photocatalytic activity under visible-light irradiation, evaluated via degradation of Rhodamine B.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA