Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Chem Commun (Camb) ; 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724282

RESUMO

Herein, we report on selectivity control in C-H activations with alkylidenecyclopropanes (ACPs) for the chemo-selective assembly of cyclopropanes or dienes. Thus, unprecedented rhodaelectro-catalyzed C-H activations were realized with diversely decorated ACPs with a wide substrate scope and electricity as the sole oxidant.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32991021

RESUMO

Electrocatalyzed oxidative B-H nitrogenations of nido-carborane (nido-7,8-C2 B9 H12 - ) with N-heterocycles have been established, enabling the preparation of various N-substituted nido-carboranes without chemical oxidants or metal catalyst under ambient conditions. The electrolysis manifold occurred with high levels of efficiency as well as chemo- and position- selectivity, employing sustainable electricity as the sole oxidant. The strategy set the stage for a user-friendly access to novel amino acid and fluorogenic boron-dipyrrin (BODIPY)-labeled nido-carborane hybrids.

4.
Chemistry ; 26(66): 15290-15297, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-32770682

RESUMO

We disclose the unprecedented hybrid-ruthenium catalysis for distal meta-C-H activation. The hybrid-ruthenium catalyst was recyclable, as was proven by various heterogeneity tests, and fully characterized with various microscopic and spectroscopic techniques, highlighting the physical and chemical stability. Thereby, the hybrid-ruthenium catalysis proved broadly applicable for meta-C-H alkylations of among others purine-based nucleosides and natural product conjugates. Additionally, its versatility was further reflected by meta-C-H activations through visible-light irradiation, as well as para-selective C-H activations.

5.
Angew Chem Int Ed Engl ; 59(41): 18103-18109, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32662573

RESUMO

Ambient temperature ruthenium-catalyzed C-H arylations were accomplished by visible light without additional photocatalysts. The robustness of the ruthenium-catalyzed C-H functionalization protocol was reflected by a broad range of sensitive functional groups and synthetically useful pyrazoles, triazoles and sensitive nucleosides and nucleotides, as well as multifold C-H functionalizations. Biscyclometalated ruthenium complexes were identified as the key intermediates in the photoredox ruthenium catalysis by detailed computational and experimental mechanistic analysis. Calculations suggested that the in situ formed photoactive ruthenium species preferably underwent an inner-sphere electron transfer.

6.
Chemistry ; 26(69): 16450-16454, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32596872

RESUMO

C-H hydroxylation of aryl acetamides and alkyl phenylacetyl esters was accomplished via challenging distal weak O-coordination by versatile ruthenium(II/IV) catalysis. The ruthenium(II)-catalyzed C-H oxygenation of aryl acetamides proceeded through C-H activation, ruthenium(II/IV) oxidation and reductive elimination, thus providing step-economical access to valuable phenols. The p-cymene-ruthenium(II/IV) manifold was established by detailed experimental and DFT-computational studies.

7.
Angew Chem Int Ed Engl ; 59(27): 11130-11135, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32129528

RESUMO

A ruthenium-catalyzed electrochemical dehydrogenative annulation reaction of imidazoles with alkynes has been established, enabling the preparation of various bridgehead N-fused [5,6]-bicyclic heteroarenes through regioselective electrochemical C-H/N-H annulation without chemical metal oxidants. Novel azaruthenabicyclo[3.2.0]heptadienes were fully characterized and identified as key intermediates. Mechanistic studies are suggestive of an oxidatively induced reductive elimination pathway within a ruthenium(II/III) regime.

8.
Angew Chem Int Ed Engl ; 59(8): 3184-3189, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31777143

RESUMO

The catalytic generation of hypervalent iodine(III) reagents by anodic electrooxidation was orchestrated towards an unprecedented electrocatalytic C-H oxygenation of weakly coordinating aromatic amides and ketones. Thus, catalytic quantities of iodoarenes in concert with catalytic amounts of ruthenium(II) complexes set the stage for versatile C-H activations with ample scope and high functional group tolerance. Detailed mechanistic studies by experiment and computation substantiate the role of the iodoarene as the electrochemically relevant species towards C-H oxygenations with electricity as a sustainable oxidant and molecular hydrogen as the sole by-product. para-Selective C-H oxygenations likewise proved viable in the absence of directing groups.

9.
Chemistry ; 25(71): 16246-16250, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31820511

RESUMO

The widespread applications of substituted diketopyrrolopyrroles (DPPs) call for the development of efficient methods for their modular assembly. Herein, we present a π-expansion strategy for polyaromatic hydrocarbons (PAHs) by C-H activation in a sustainable fashion. Thus, twofold C-H/N-H activations were accomplished by versatile ruthenium(II)carboxylate catalysis, providing step-economical access to diversely decorated fluorogenic DPPs that was merged with late-stage palladium-catalyzed C-H arylation on the thus-assembled DPP motif.

10.
J Am Chem Soc ; 141(43): 17198-17206, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31549815

RESUMO

A flow-metallaelectro-catalyzed C-H activation was realized in terms of robust rhodaelectro-catalyzed alkyne annulations. To this end, a modular electro-flow cell with a porous graphite felt anode was designed to ensure efficient turnover. Thereby, a variety of C-H/N-H functionalizations proved amenable for alkyne annulations with high levels of regioselectivity and functional group tolerance, viable in both an inter- or intramolecular manner. The electro-flow C-H activation allowed easy scale up, while in-operando kinetic analysis was accomplished by online flow-NMR spectroscopy. Mechanistic studies suggest an oxidatively induced reductive elimination pathway on rhodium(III) in an electrocatalytic regime.

11.
Chemistry ; 25(55): 12712-12718, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433877

RESUMO

Arylated cyclobutanes were accessed by a versatile palladium-catalyzed secondary C(sp3 )-H activation, exploiting chelation assistance by modular triazoles. The C-H arylation led to cyclobutane natural product derivatives in a highly regioselective fashion, setting the stage for the easy access to novel fluorogenic boron-dipyrrin (BODIPY)-labeled probes for live-cell imaging.


Assuntos
Rastreamento de Células/métodos , Ciclobutanos/química , Imagem Óptica/métodos , Triazóis/química , Boro , Compostos de Boro , Catálise , Quelantes/química , Estrutura Molecular , Paládio/química
12.
Angew Chem Int Ed Engl ; 58(16): 5338-5342, 2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30753749

RESUMO

Complexity-increasing Domino reactions comprising C-H allenylation, a Diels-Alder reaction, and a retro-Diels-Alder reaction were realized by a versatile catalyst derived from earth-abundant, non-toxic manganese. The C-H activation/Diels-Alder/retro-Diels-Alder alkyne annulation sequence provided step-economical access to valuable indolone alkaloid derivatives through a facile organometallic C-H activation manifold with transformable pyridines.

13.
Angew Chem Int Ed Engl ; 58(6): 1684-1688, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30499607

RESUMO

Bioorthogonal late-stage diversification of structurally complex peptides has enormous potential for drug discovery and molecular imaging. In recent years, transition-metal-catalyzed C-H activation has emerged as an increasingly viable tool for peptide modification. Despite major accomplishments, these strategies largely rely on expensive palladium catalysts. We herein report an unprecedented cobalt(III)-catalyzed peptide C-H activation, which enables the direct C-H functionalization of structurally complex peptides, and sets the stage for a multicatalytic C-H activation/alkene metathesis/hydrogenation strategy for the assembly of novel cyclic peptides.


Assuntos
Cobalto/química , Compostos Organometálicos/química , Peptídeos/síntese química , Catálise , Estrutura Molecular , Peptídeos/química , Estereoisomerismo
14.
Chem Commun (Camb) ; 54(91): 12840-12843, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30374498

RESUMO

Ruthenium-catalysis enabled the C-5 selective C-H oxygenation of naphthoquinones, and also sets the stage for the site-selective introduction of a hydroxyl group into anthraquinones. A-ring modified naphthoquinoidal compounds represent an important class of bioactive quinones for which the present study encompasses the first C-H oxygenation strategy by weak O-coordination.

15.
J Am Chem Soc ; 140(37): 11836-11847, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30134657

RESUMO

The first Ru(II)-catalyzed arylation of substrates without a directing group was recently developed. Remarkably, this process only worked in the presence of a benzoate additive, found to be crucial for the oxidative addition step at Ru(II). However, the exact mode of action of the benzoate was unknown. Herein, we disclose a mechanistic study that elucidates the key role of the benzoate salt in the C-H arylation of fluoroarenes with aryl halides. Through a combination of rationally designed stoichiometric experiments and DFT studies, we demonstrate that the aryl-Ru(II) species arising from initial C-H activation of the fluoroarene undergoes cyclometalation with the benzoate to generate an anionic Ru(II) intermediate. The enhanced lability of this intermediate, coupled with the electron-rich anionic Ru(II) metal center renders the oxidative addition of the aryl halide accessible. The role of an additional (NMe4)OC(CF3)3 additive in facilitating the overall arylation process is also shown to be linked to a shift in the C-H pre-equilibrium associated with benzoate cyclometalation.

16.
J Am Chem Soc ; 140(11): 3981-3987, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29337542

RESUMO

An efficient protocol was developed to construct functionally dense quaternary carbons with concomitant formation of a new Csp3-Csp3 bond via Pd-catalyzed decarboxylative transformation of vinyl cyclic carbonates. This redox-neutral catalytic system features stereocontrolled formation of multisubstituted allylic scaffolds with an aldehyde functionality generated in situ, and it typically can be performed at room temperature without any additives. DFT calculations provide a rationale toward the selective formation of these compounds and reveal a complex mechanism that with the help of microkinetic models is able to reproduce the nontrivial dependence of the identity of the product on the nature of the substituents in the substrate.

17.
J Am Chem Soc ; 138(36): 11970-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27551931

RESUMO

Significant progress has been observed in recent years in the synthesis of allylic amines, which are important building blocks in synthetic chemistry. Most of these processes are effective toward the preparation of allylic amines, with limited potential to introduce three or four different substituents on the olefinic unit in a stereocontrolled fashion. Therefore, the discovery of a mild and operationally simple protocol allowing such challenging stereoselective synthesis of multisubstituted allylic amines remains an inspiring target. Herein, we report the first general and practical methodology for the stereoselective synthesis of tri- and tetrasubstituted allylic amines based on Pd-catalyzed conversion of allyl surrogates readily obtained from cyclic vinyl carbonates. These rare conversions are characterized by excellent stereoselectivity, operational simplicity, mild reaction conditions, and wide scope in reaction partners. DFT studies were performed to rationalize the stereocontrol in these allylic amine formation reactions, and evidence is provided that the formation of a six-membered palladacyclic intermediate leads toward the formation of (Z)-configured allylic amine products.

18.
Org Lett ; 15(19): 5040-3, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24032648

RESUMO

The mechanism and the role of KOtBu in an enantioselective NHC-catalyzed Stetter reaction between p-chlorobenzaldehyde and N-acylamido acrylate is established using DFT(M06-2X) methods. The Gibbs free energies are found to be significantly lower for transition states with explicit bound KOtBu as compared to the conventional pathways without the counterions. An intermolecular proton transfer from HOtBu to the prochiral carbon is identified as the stereocontrolling step. The computed enantioselectivities are in excellent agreement with the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...