Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; : 3821-3827, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330050

RESUMO

NaCl is one of the simplest compounds and was thought to be well-understood, and yet, unexpected complexities related to it were uncovered at high pressure and in low-dimensional states. Here, exotic hexagonal NaCl thin films on the (110) diamond surface were crystallized in the experiment following a theoretical prediction based on ab initio evolutionary algorithm USPEX. State-of-the-art calculations and experiments showed the existence of a hexagonal NaCl thin film, which is due to the strong chemical interaction of the NaCl film with the diamond substrate.

2.
Nanotechnology ; 31(29): 295602, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213679

RESUMO

A new approach to creating a new and locally nanostructured graphene-based material is reported. We studied the electric and structural properties of partially fluorinated graphene (FG) films obtained from an FG-suspension and nanostructured by high-energy Xe ions. Local shock heating in ion tracks is suggested to be the main force driving the changes. It was found that ion irradiation leads to the formation of locally thermally expanded FG and its cracking into nanoparticles with small (∼1.5-3 nm) graphene quantum dots (GQD), embedded in them. The bandgap of GQD was estimated as 1 -1.5 eV. A further developed approach was applied to correct the functional properties of printed FG-based crossbar memristors. Dielectric FG films with small quantum dots may offer prospects in graphene-based electronics due to their stability and promising properties.

3.
Sci Rep ; 9(1): 14267, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582761

RESUMO

We have predicted stable reconstructions of the (100) and (111) surfaces of NaCl using the global optimization algorithm USPEX. Several new reconstructions, together with the previously reported ones, are found. For the cleaved bare (100) surface, pure Na and pure Cl are the only stable surface phases. Our study of the (111) surface shows that a newly predicted Na3Cl-(1 × 1) reconstruction is thermodynamically stable in a wide range of chlorine chemical potentials. It has a sawtooth-like profile where each facet reproduces the (100) surface of rock-salt NaCl, hinting on the preferred growth of the (100) surface. We used Bader charge analysis to explain the preferable formation of this sawtooth-like Na3Cl-(1 × 1) reconstruction of the (111) surface of NaCl. We find that at a very high chemical potential of Na, the polar (and normally absent) (111) surface becomes part of the equilibrium crystal morphology. At both very high and very low chemical potentials of Cl, we predict a large decrease of surface energy and fracture toughness (the Rehbinder effect).

4.
Nano Lett ; 19(3): 2084-2091, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30786716

RESUMO

Aluminum nitride (AlN) has a unique combination of properties, such as high chemical and thermal stability, nontoxicity, high melting point, large energy band gap, high thermal conductivity, and intensive light emission. This combination makes AlN nanowires (NWs) a prospective material for optoelectronic and field-emission nanodevices. However, there has been very limited information on mechanical properties of AlN NWs that is essential for their reliable utilization in modern technologies. Herein, we thoroughly study mechanical properties of individual AlN NWs using direct,  in situ bending and tensile tests inside a high-resolution TEM. Overall, 22 individual NWs have been tested, and a strong dependence of their Young's moduli and ultimate tensile strengths (UTS) on their growth axis crystallographic orientation is documented. The Young's modulus of NWs grown along the [101̅1] orientation is found to be in a range 160-260 GPa, whereas for those grown along the [0002] orientation it falls within a range 350-440 GPa. In situ TEM tensile tests demonstrate the UTS values up to 8.2 GPa for the [0002]-oriented NWs, which is more than 20 times larger than that of a bulk AlN compound. Such properties make AlN nanowires a highly promising material for the reinforcing applications in metal matrix and other composites. Finally, experimental results were compared and verified under a density functional theory simulation, which shows the pronounced effect of growth axis on the AlN NW mechanical behavior. The modeling reveals that with an increasing NW width the Young's modulus tends to approach the elastic constants of a bulk material.

5.
Nano Lett ; 18(11): 7238-7246, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346785

RESUMO

Research on electromechanical properties of semiconducting nanowires, including plastic behavior of Si nanowires and superb carrier mobility of Ge and Ge/Si core-shell nanowires, has attracted increasing attention. However, to date, there have been no direct experimental studies on crystallography dynamics and its relation to electrical and mechanical properties of Ge/Si core-shell nanowires. In this Letter, we in parallel investigated the crystallography changes and electrical and mechanical behaviors of Ge/Si core-shell nanowires under their deformation in a transmission electron microscope (TEM). The core-shell Ge/Si nanowires were bent and strained in tension to high limits. The nanowire Young's moduli were measured to be up to ∼191 GPa, and tensile strength was in a range of 3-8 GPa. Using high-resolution imaging, we confirmed that under large bending strains, Si shells had irregularly changed to the polycrystalline/amorphous state, whereas Ge cores kept single crystal status with the local lattice strains on the compressed side. The nanowires revealed cyclically changed electronic properties and had decent mechanical robustness. Electron diffraction patterns obtained from  in situ TEM, paired with theoretical simulations, implied that nonequilibrium phases of polycrystalline/amorphous Si and ß-Sn Ge appearing during the deformations may explain the regarded mechanical robustness and varying conductivities under straining. Finally, atomistic simulations of Ge/Si nanowires showed the pronounced changes in their electronic structure during bending and the appearance of a conductive channel in compressed regions which might also be responsible for the increased conductivity seen in bent nanowires.

6.
Ultramicroscopy ; 194: 108-116, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30107290

RESUMO

Physical properties of carbon nanotubes (CNTs) are closely related to the atomic structure, i.e. the chirality. It is highly desirable to develop a technique to modify their chirality and control the resultant transport properties. Herein, we present an in situ transmission electron microscopy (TEM) probing method to monitor the chirality transition and transport properties of individual few-walled CNTs. The changes of tube structure including the chirality are stimulated by programmed bias pulses and associated Joule heating. The chirality change of each shell is analyzed by nanobeam electron diffraction. Supported by molecular dynamics simulations, a preferred chirality transition path is identified, consistent with the Stone-Wales defect formation and dislocation sliding mechanism. The electronic transport properties are measured along with the structural changes, via fabricating transistors using the individual nanotubes as the suspended channels. Metal-to-semiconductor transitions are observed along with the chirality changes as confirmed by both the electron diffraction and electrical measurements. Apart from providing an alternative route to control the chirality of CNTs, the present work demonstrates the rare possibility of obtaining the dynamic structure-properties relationships at the atomic and molecular levels.


Assuntos
Nanotubos de Carbono/química , Elétrons , Microscopia Eletrônica de Transmissão/métodos , Simulação de Dinâmica Molecular , Semicondutores
7.
Nanoscale ; 10(17): 8099-8105, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29671456

RESUMO

Due to their excellent mechanical properties, nanoparticles have great potential as reinforcing phases in composite materials, friction modifiers in liquid lubricants, catalysts and drug-delivery agents. In the present study, the mechanical analysis of individual spherical hollow BN nanoparticles (BNNPs) using a combination of in situ compression tests inside a high-resolution transmission electron microscope (TEM) and theoretical modelling was conducted. It was found that BNNPs display high mechanical stiffness and a large value of elastic recovery. This enables the hollow BNNPs to exhibit considerably large cyclic deformation (up to 30% of the sphere's original external diameter) and to accumulate plastic deformation of approximately 30% of the total compression strain. Theoretical simulations allowed for elucidation of BNNPs' structural changes under compression at the atomic level and explained the origin of their high stiffness and large critical deformation values.

8.
Adv Mater ; 29(28)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28523720

RESUMO

Engineering of the optical, electronic, and magnetic properties of hexagonal boron nitride (h-BN) nanomaterials via oxygen doping and functionalization has been envisaged in theory. However, it is still unclear as to what extent these properties can be altered using such methodology because of the lack of significant experimental progress and systematic theoretical investigations. Therefore, here, comprehensive theoretical predictions verified by solid experimental confirmations are provided, which unambiguously answer this long-standing question. Narrowing of the optical bandgap in h-BN nanosheets (from ≈5.5 eV down to 2.1 eV) and the appearance of paramagnetism and photoluminescence (of both Stokes and anti-Stokes types) in them after oxygen doping and functionalization are discussed. These results are highly valuable for further advances in semiconducting nanoscale electronics, optoelectronics, and spintronics.

9.
Nanoscale ; 9(11): 3980-3985, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28266667

RESUMO

The successful isolation and remarkable properties of graphene have recently triggered investigation of two-dimensional (2D) materials from layered compounds; however, one-atom-thick 2D materials without bulk layered counterparts are scarcely reported. Here we report the structure and properties of novel 2D copper oxide studied by experimental and theoretical methods. Electron microscopy observations reveal that copper oxide can form monoatomic layers with an unusual square lattice on graphene. Density functional theory calculations suggest that oxygen atoms at the centre of the square lattice stabilizes the 2D Cu structure, and that the 2D copper oxide sheets have unusual electronic and magnetic properties different from 3D bulk copper oxide.

10.
Nanotechnology ; 28(8): 085205, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28114121

RESUMO

Here we present an investigation of new quasi-two-dimensional heterostructures based on the alternation of bounded carbon and boron nitride layers (C/BN). We carried out a theoretical study of the atomic structure, stability and electronic properties of the proposed heterostructures. Such ultrathin quasi-two-dimensional C/BN films can be synthesized by means of chemically induced phase transition by connection of the layers of multilayered h-BN/graphene van der Waals heterostructures, which is indicated by the negative phase transition pressure in the calculated phase diagrams (P, T) of the films. It was shown that the band gap value of the C/BN films spans the infrared and visible spectrum. We hope that the proposed films and fabrication method can be considered as a possible route to obtain nanostructures with a controllable band gap in wide energy range. This makes these materials potentially suitable for a variety of applications, including photovoltaics, photoelectronics and more.

11.
Nano Lett ; 16(10): 6008-6013, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27606954

RESUMO

We demonstrate that high resolution transmission electron microscopy (HRTEM) paired with light illumination of a sample and its electrical probing can be utilized for the in situ study of initiated photocurrents in free-standing nanowires. Morphology, phase and crystallographic information from numerous individual CdS nanowires is obtained simultaneously with photocurrent measurements. Our results indicate that elastically bent CdS nanowires possessing a wurtzite structure show statistically unchanged values of ON/OFF (photocurrent/dark current) ratios. Photocurrent spectroscopy reveals red shifts of several nanometers in the cutoff wavelength after nanowire bending. This results from deformation-induced lattice strain and associated changes in the nanowire band structure, as confirmed by selected area electron diffraction (SAED) analyses and density functional tight binding (DFTB) simulations. The ON/OFF ratio stabilities and photocurrent spectroscopy shift of bent CdS nanowires are important clues for future flexible electronics, optoelectronics, and photovoltaics.

12.
Phys Chem Chem Phys ; 18(2): 965-9, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26662205

RESUMO

Magnesium (Mg) is one of the lightest industrially used metals. However, wide applications of Mg-based components require a substantial enhancement of their mechanical characteristics. This can be achieved by introducing small particles or fibers into the metal matrix. Using first-principles calculations, we investigate the stability and mechanical properties of a nanocomposite made of magnesium reinforced with boron nitride (BN) nanostructures (BN nanotubes and BN monolayers). We show that boron vacancies at the BN/Mg interface lead to a substantial increase in BN/Mg bonding establishing an efficient route towards the development of BN/Mg composite materials with enhanced mechanical properties.

13.
Nanotechnology ; 26(17): 175704, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25835030

RESUMO

Based on the tight-binding model, we investigate the formation process of quantum dots onto graphene nanoribbons (GNRs) by the sequential adsorption of hydrogen atoms onto the ribbon's surface. We define the difference between hydrogenation processes onto the surface of zigzag (ZGNR) and armchair graphene nanoribbons (AGNR) by calculating the binding energies with respect to the energy of isolated hydrogen atoms for all considered structures.

14.
Nat Commun ; 5: 3631, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24698887

RESUMO

The discovery of two-dimensional materials became possible due to the mechanical cleavage technique. Despite its simplicity, the as-cleaved materials demonstrated surprising macro-continuity, high crystalline quality and extraordinary mechanical and electrical properties that triggered global research interest. Here such cleavage processes and associated mechanical behaviours are investigated by a direct in situ transmission electron microscopy probing technique, using atomically thin molybdenum disulphide layers as a model material. Our technique demonstrates layer number selective cleavage, from a monolayer to double layer and up to 23 atomic layers. In situ observations combined with molecular dynamics simulations reveal unique layer-dependent bending behaviours, from spontaneous rippling (<5 atomic layers) to homogeneous curving (~ 10 layers) and finally to kinking (20 or more layers), depending on the competition of strain energy and interfacial energy.

15.
J Nanosci Nanotechnol ; 10(8): 4992-7, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21125840

RESUMO

The atomic structure and elastic properties of silicon carbide nanowires of different shapes and effective sizes were studied using density functional theory and classical molecular mechanics. Upon surface relaxation, surface reconstruction led to the splitting of the wire geometry, forming both hexagonal (surface) and cubic phases (bulk). The behavior of the pristine SiC wires under compression and stretching was studied and Young's moduli were obtained. For Y-shaped SiC nanowires the effective Young's moduli and behavior in inelastic regime were elucidated.

16.
Nano Lett ; 10(8): 3209-15, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698639

RESUMO

Hexagonal boron nitride (h-BN), a layered material similar to graphite, is a promising dielectric. Monolayer h-BN, so-called "white graphene", has been isolated from bulk BN and could be useful as a complementary two-dimensional dielectric substrate for graphene electronics. Here we report the large area synthesis of h-BN films consisting of two to five atomic layers, using chemical vapor deposition. These atomic films show a large optical energy band gap of 5.5 eV and are highly transparent over a broad wavelength range. The mechanical properties of the h-BN films, measured by nanoindentation, show 2D elastic modulus in the range of 200-500 N/m, which is corroborated by corresponding theoretical calculations.

17.
ACS Nano ; 4(5): 2784-90, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20411911

RESUMO

The atomic structure and elastic properties of Y-shaped silicon nanowires of "fork"- and "bough"-types were theoretically studied, and effective Young moduli were calculated using Tersoff interatomic potential. The oscillation of fork Y-type branched nanowires with various branch lengths and diameters was studied. In the final stages of the bending, the formation of new bonds between different parts of the wires was observed. It was found that the stiffness of the nanowires is comparable with the stiffness of Y-shaped carbon nanotubes.


Assuntos
Elasticidade , Modelos Moleculares , Nanofios/química , Silício/química , Módulo de Elasticidade , Conformação Molecular , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA