Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807494

RESUMO

A series of novel V-shaped quinoxaline, [1,2,5]oxadiazolo[3,4-b]pyrazine and [1,2,5]thiadiazolo[3,4-b]pyrazine push-pull derivatives with 2,4'-biphenylene linker were designed and their electrochemical, photophysical and nonlinear optical properties were investigated. [1,2,5]Oxadiazolo[3,4-b]pyrazine is the stronger electron-withdrawing fragment as shown by electrochemical, and photophysical data. All compounds are emissive in a solid-state (from the cyan to red region of the spectrum) and quinoxaline derivatives are emissions in DCM solution. It has been found that quinoxaline derivatives demonstrate important solvatochromism and extra-large Stokes shifts, characteristic of twisted intramolecular charge transfer excited state as well as aggregation induced emission. The experimental conclusions have been justified by theoretical (TD-)DFT calculations.

2.
ACS Omega ; 5(25): 15681-15690, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637843

RESUMO

A convenient approach to [1,2,5]oxadiazolo[3',4':5,6]pyrazino[2,3-b]indoles and their heteroannulated analogues bearing various aryl substituents in the backbone has been developed. This synthetic protocol is based on Pd-catalyzed Buchwald-Hartwig and subsequent annulation by intramolecular oxidative cyclodehydrogenation. The photophysical properties for new polycycles have been measured.

3.
ACS Omega ; 5(14): 8200-8210, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32309730

RESUMO

Herein, we describe the synthesis of unsymmetrically substituted dibenzo[f,h]furazano[3,4-b]quinoxalines by intramolecular cyclization through direct transition metal-free C-H functionalization. The electrochemical and photophysical properties for several polycycles have been measured. In thin films of the dibenzo[f,h]furazano[3,4-b]quinoxalines, hole mobility is in the order of 10-4 cm2 V-1 s-1. The results show that the HOMO and LUMO energy levels are appropriate for using the compounds as hole-transport materials in thin-film devices, in particular, organic and perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA