RESUMO
Thiolate-protected metal nanoparticles containing a few to few hundred metal atoms are interesting materials exhibiting unique physicochemical properties. They encompass the bulk-to-molecule transition region, where discrete electronic states emerge and electronic band energetics yield to quantum confinement effects. Recent progresses in the synthesis and characterization of ultrasmall gold nanoparticles have opened up new avenues for the isolation of extremely monodispersed nanoparticles with atomically precision. These nanoparticles are also called nanoclusters to distinguish them from other regular metal nanoparticles with core diameter >2 nm. These nanoclusters are typically identified by their actual molecular formulas; prominent among these are Au25(SR)18, Au38(SR)24, and Au102(SR)44, where SR is organothiolate. A number of single crystal structures of these nanoclusters have been disclosed. Researchers have effectively utilized density functional theory (DFT) calculations to predict their atomic and electronic structures, as well as their physicochemical properties. The atomically precise metal nanoclusters have been the focus of recent studies owing to their novel size-specific electrochemical, optical, and catalytic properties. In this Account, we highlight recent advances in electrochemistry of atomically precise metal nanoclusters and their applications in electrocatalysis and electrochemical sensing. Compared with gold nanoclusters, much less progress has been made in the electrochemical studies of other metal nanoclusters, and thus, we mainly focus on the electrochemistry and electrochemical applications of gold-based nanoclusters. Voltammetry has been extremely powerful in investigating the electronic structure of metal nanoclusters, especially near HOMO and LUMO levels. A sizable opening of HOMO-LUMO gap observed for Au25(SR)18 gradually decreases with increasing nanocluster size, which is in line with the change in the optical gap. Heteroatom-doping has been a powerful strategy to modify the optical and electrochemical properties of metal nanoclusters at the atomic level. While the superatom theory predicts 8-electron configuration for [Au25(SR)18]- and many doped nanoclusters thereof, Pt- and Pd-doped [PtAu24(SR)18]0 and [PdAu24(SR)18]0 nanoclusters show dramatically different electronic structures, as manifested in their optical spectra and voltammograms, suggesting the occurrence of the Jahn-Teller distortion in these doped nanoclusters. Furthermore, metal-doping may alter their surface binding properties, as well as redox potentials. Metal nanoclusters offer great potential for attaining high activity and selectivity in their electrocatalytic applications. The well-defined core-shell structure of a metal nanocluster is of special advantage because the core and shell can be independently engineered to exhibit suitable binding properties and redox potentials. We discuss recent progress made in electrocatalysis based upon metal nanoclusters tailored for water splitting, CO2 conversion, and electrochemical sensing. A well-defined model nanocatalyst is absolutely necessary to reveal the detailed mechanism of electrocatalysis and thereby to lead to the development of a new efficient electrocatalyst. We envision that atomically controlled metal nanoclusters will enable us to systematically optimize the electrochemical and surface properties suitable for electrocatalysis, thus providing a powerful platform for the discovery of finely tuned nanocatalysts.
RESUMO
This paper describes the effects of doped metals on hydrogen evolution reaction (HER) electrocatalyzed by atomically controlled MAu24 and M2Au36 nanoclusters, where M = Pt and Pd. HER performances, such as onset potential ( Eonset), catalytic current density, and turnover frequency (TOF), are comparatively examined with respect to the doped metals. Doping Pt or Pd into gold nanoclusters not only changes the electrochemical redox potentials of nanoclusters but also considerably improves the HER activities. Eonset is found to be controlled by the nanocluster's reduction potential matching the reduction potential of H+. The higher catalytic current and TOF are observed with the doped nanoclusters in the order of PtAu24 > PdAu24 > Au25. The same trend is observed with the Au38 group (Pt2Au36 > Pd2Au36> Au38). Density functional theory calculations have revealed that the hydrogen adsorption free energy (Δ GH) is significantly lowered by metal-doping in the order of Au25 > PdAu24 > PtAu24 and Au38 > Pd2Au36 > Pt2Au36, indicating that hydrogen adsorption on the active site of nanocluster is thermodynamically favored by Pd-doping and further by Pt-doping. The doped metals, albeit buried in the core of the nanoclusters, have profound impact on their HER activities by altering their reduction potentials and hydrogen adsorption free energies.
RESUMO
Heteroatom doping is a powerful means to tune the optical and electronic properties of gold clusters at the atomic level. We herein report that doping a Au38 cluster with Pt and Pd atoms leads to core-doped [Pt2Au36(SC6H13)24]2- and [Pd2Au36(SC6H13)24]0, respectively. Voltammetric investigations show that these clusters exhibit drastically different electronic structures; whereas the HOMO-LUMO gap of [Pt2Au36(SC6H13)24]2- is found to be 0.95 V, that of [Pd2Au36(SC6H13)24]0 is drastically decreased to 0.26 V, suggesting Jahn-Teller distortion of the 12-electron cluster. Density functional investigations confirm that the HOMO-LUMO gap of the Pd-doped cluster is indeed reduced. Analysis of the optimized geometry for the 12-electron [Pd2Au36(SC6H13)24]0 reveals that the rod-like M2Au21 core becomes more flattened upon Pd-doping. Reversible geometrical interconversion between [Pt2Au36(SC6H13)24]0 and [Pt2Au36(SC6H13)24]2- is clearly demonstrated by manipulating the oxidation state of the cluster.
RESUMO
The energy gap law relates the nonradiative decay rate to the energy gap separating the ground and excited states. Here we report that the energy gap law can be applied to exciton dynamics in gold cluster molecules. Size-dependent electrochemical and optical properties were investigated for a series of n-hexanethiolate-protected gold clusters ranging from Au25 to Au333. Voltammetric studies reveal that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of these clusters decrease with increasing cluster size. Combined femtosecond and nanosecond time-resolved transient absorption measurements show that the exciton lifetimes decrease with increasing cluster size. Comparison of the size-dependent exciton lifetimes with the HOMO-LUMO gaps shows that they are linearly correlated, demonstrating the energy gap law for excitons in these gold cluster molecules.
RESUMO
The theoretically predicted volcano plot for hydrogen production shows the best catalyst as the one that ensures that the hydrogen binding step is thermodynamically neutral. However, the experimental realization of this concept has suffered from the inherent surface heterogeneity of solid catalysts. It is even more challenging for molecular catalysts because of their complex chemical environment. Here, we report that the thermoneutral catalyst can be prepared by simple doping of a platinum atom into a molecule-like gold nanocluster. The catalytic activity of the resulting bimetallic nanocluster, PtAu24(SC6H13)18, for the hydrogen production is found to be significantly higher than reported catalysts. It is even better than the benchmarking platinum catalyst. The molecule-like bimetallic nanocluster represents a class of catalysts that bridge homogeneous and heterogeneous catalysis and may provide a platform for the discovery of finely optimized catalysts.
RESUMO
The exceptional stability of thiolate-protected Au25 clusters, [Au25(SR)18](-), arises from the closure of superatomic electron shells, leading to a noble-gas-like 8-electron configuration (1S(2)1P(6)). Here we present that replacing the core Au atom with Pd or Pt results in stable [MAu24(SR)18](0) clusters (M = Pd, Pt) having a superatomic 6-electron configuration (1S(2)1P(4)). Voltammetric studies of [PdAu24(SR)18](0) and [PtAu24(SR)18](0) reveal that the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps of these clusters are 0.32 and 0.29 eV, respectively, indicating their electronic structures are drastically altered upon doping of the foreign metal. Density functional investigations confirm that the HOMO-LUMO gaps of these clusters are indeed smaller, respectively 0.33 and 0.32 eV, than that of [Au25(SR)18](-) (1.35 eV). Analysis of the optimized geometries for the 6-electron [MAu24(SR)18](0) clusters shows that the MAu12 core is slightly flattened to yield an oblate ellipsoid. The drastically decreased HOMO-LUMO gaps observed are therefore the result of Jahn-Teller-like distortion of the 6-electron [MAu24(SR)18](0) clusters, accompanying splitting of the 1P orbitals. These clusters become 8-electron [MAu24(SR)18](2-) clusters upon electronic charging, demonstrating reversible interconversion between the 6-electron and 8-electron configurations of MAu24(SR)18.
RESUMO
Luminescent nanomaterials have captured the imagination of scientists for a long time and offer great promise for applications in organic/inorganic light-emitting displays, optoelectronics, optical sensors, biomedical imaging, and diagnostics. Atomically precise gold clusters with well-defined core-shell structures present bright prospects to achieve high photoluminescence efficiencies. In this study, gold clusters with a luminescence quantum yield greater than 60% were synthesized based on the Au22(SG)18 cluster, where SG is glutathione, by rigidifying its gold shell with tetraoctylammonium (TOA) cations. Time-resolved and temperature-dependent optical measurements on Au22(SG)18 have shown the presence of high quantum yield visible luminescence below freezing, indicating that shell rigidity enhances the luminescence quantum efficiency. To achieve high rigidity of the gold shell, Au22(SG)18 was bound to bulky TOA that resulted in greater than 60% quantum yield luminescence at room temperature. Optical measurements have confirmed that the rigidity of gold shell was responsible for the luminescence enhancement. This work presents an effective strategy to enhance the photoluminescence efficiencies of gold clusters by rigidifying the Au(I)-thiolate shell.
Assuntos
Ouro/química , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Cátions/química , Glutationa/química , Luminescência , Modelos Moleculares , Compostos de Amônio Quaternário/químicaRESUMO
Ionic liquids are room-temperature molten salts that are increasingly used in electrochemical devices, such as batteries, fuel cells, and sensors, where their intrinsic ionic conductivity is exploited. Here we demonstrate that combining anionic, redox-active Au25 clusters with imidazolium cations leads to a stable ionic liquid possessing both ionic and electronic conductivity. The Au25 ionic liquid was found to act as a versatile matrix for amperometric enzyme biosensors toward the detection of glucose. Enzyme electrodes prepared by incorporating glucose oxidase in the Au25 ionic liquid show high electrocatalytic activity and substrate affinity. Au25 clusters in the electrode were found to act as effective redox mediators as well as electronic conductors determining the detection sensitivity. With the unique electrochemical properties and almost unlimited structural tunability, the ionic liquids of quantum-sized gold clusters may serve as versatile matrices for a variety of electrochemical biosensors.
Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas/instrumentação , Ouro/química , Líquidos Iônicos , Nanoestruturas , Enzimas Imobilizadas/química , Glucose/análise , Glucose Oxidase/químicaRESUMO
Tetrathiafulvalenes (TTF)-annulated [28]hexaphyrin affords an electron rich flexible π-conjugated system whose limiting conformations can be controlled through choice of solvents. The conformation-dependent intramolecular charge transfer character, as well as electron reserve capability of the hexakis-TTF annulated hexaphyrin, was analyzed.
Assuntos
Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos/química , Porfirinas/química , Cristalografia por Raios X , Ciclização , Técnicas Eletroquímicas , Elétrons , Compostos Heterocíclicos com 2 Anéis/síntese química , Conformação Molecular , Oxirredução , Porfirinas/síntese química , Solventes/químicaRESUMO
A series of tetrathiafulvalene (TTF)-annulated porphyrins, and their corresponding Zn(II) complexes, have been synthesized. Detailed electrochemical, photophysical, and theoretical studies reveal the effects of intramolecular charge-transfer transitions that originate from the TTF fragments to the macrocyclic core. The incremental synthetic addition of TTF moieties to the porphyrin core makes the species more susceptible to these charge-transfer (CT) effects as evidenced by spectroscopic studies. On the other hand, regular positive shifts in the reduction signals are seen in the square-wave voltammograms as the number of TTF subunits increases. Structural studies that involve the tetrakis-substituted TTF-porphyrin (both free-base and Zn(II) complex) reveal only modest deviations from planarity. The effect of TTF substitution is thus ascribed to electronic overlap between annulated TTF subunits rather than steric effects. The directly linked thiafulvalene subunits function as both π acceptors as well as σ donors. Whereas σ donation accounts for the substituent-dependent charge-transfer transitions, it is the π-acceptor nature of the appended tetrathiafulvalene groups that dominates the redox chemistry. Interactions between the subunits are also reflected in the square-wave voltammograms. In the case of the free-base derivatives that bear multiple TTF subunits, the neighboring TTF units, as well as the TTF(â +) generated through one-electron oxidation, can interact with each other; this gives rise to multiple signals in the square-wave voltammograms. On the other hand, after metalation, the electronic communication between the separate TTF moieties becomes restricted and they act as separate redox centers under conditions of oxidation. Thus only two signals, which correspond to TTF(â +) and TTF(2+), are observed. The reduction potentials are also seen to shift towards more negative values after metalation, a finding that is considered to reflect an increased HOMO-LUMO gap. To probe the excited-state dynamics and internal CT character, transient absorption spectral studies were performed. These analyses revealed that all the TTF-porphyrins of this study display relatively short excited-state lifetimes, which range from 1 to 20â ps. This reflects a very fast decay to the ground state and is consistent with the proposed intramolecular charge-transfer effects inferred from the ground-state studies. Complementary DFT calculations provide a mechanistic rationale for the electron flow within the TTF-porphyrins and support the proposed intramolecular charge-transfer interactions and π-acceptor effects.
RESUMO
We report here the selective determination of dopamine (DA) using quantum-sized gold nanoparticles coated with charge selective ligands. Glutathione protected gold nanoparticles (GS-Au(25)) were synthesized and immobilized into a sol-gel matrix via thiol linkers. The GS-Au(25) modified sol-gel electrode was found to show excellent electrocatalytic activity towards the oxidation of DA but no activity towards the oxidation of ascorbic acid. The role of electrostatic charge in the selective electrocatalytic activity of GS-Au(25) was verified by voltammetry of redox markers carrying opposite charges. The pH dependent sensitivity for the determination of DA further confirmed the charge screening effect of GS-Au(25). Mechanistic investigation revealed that the selectivity is attained by the selective formation of an electrostatic complex between the negatively charged GS-Au(25) and DA cation. The GS-Au(25) modified sol-gel electrode also showed excellent selectivity for DA in the presence of an interferent, ascorbic acid.
Assuntos
Dopamina/análise , Técnicas Eletroquímicas , Ouro/química , Nanopartículas Metálicas/química , Ácido Ascórbico , Catálise , Eletrodos , Géis/química , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução , Compostos de SulfidrilaRESUMO
We report the synthesis and electrochemical characterization of a new water-soluble Au25 cluster protected with (3-mercaptopropyl)sulfonate. The presence of sulfonate terminal groups on the surface of the cluster enabled facile phase transfer of the water-soluble cluster to organic phase by ion-pairing with hydrophobic counterions. The phase-transferred form of the water-soluble Au25 cluster was found to retain its integrity and allowed investigation of its electrochemical properties in organic media. The voltammetric investigation of the phase-transferred Au25 cluster in mixtures of CH2Cl2 and toluene has revealed that the cluster exhibits the characteristic Au25 peak pattern, but the electrochemical HOMO-LUMO energy gap of the cluster varies from 1.39 to 1.66 V depending on the solvent polarity. The origin of the solvent dependence is explained by the electrostatic field effect of the sulfonate anion on the redox potentials of the Au25 cluster.
RESUMO
This paper describes the electrocatalytic activity of quantum-sized thiolate protected Au(25) nanoparticles and their use in electrochemical sensing. The Au(25) film modified electrode exhibited excellent mediated electrocatalytic activity that was utilized for amperometric sensing of biologically relevant analytes, namely, ascorbic acid and uric acid. The electron transfer dynamics in the Au(25) film was examined as a function of Au(25) concentration, which manifested the dual role of Au(25) as an electronic conductor as well as a redox mediator. The electron transfer study has further revealed the correlation between the electronic conductivity of the Au(25) film and the sensing sensitivity.