Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 19: 5888-5897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815833

RESUMO

Probiotics administration can facilitate the restoration of host gut microbiota/metabolome after antibiotic treatment. Yet, the mechanism behind such beneficial effects remains unclear. This study constructed a rat model of antibiotic-induced gut dysbiosis to monitor the effects and mechanism of probiotic (Lactobacillus casei Zhang) treatment in maintaining gut homeostasis and restoring the gut microbiota/metabolome. Forty rats were randomly divided into four groups (n = 10 per group): control receiving only saline (Ctrl), antibiotic (AB-Ctrl), antibiotic followed by probiotic (AB-Prob), and antibiotic plus probiotic followed by probiotic (AB + Prob). Rat fecal microbiota and sera were collected at four time points from pre-treatment to post-treatment. The probiotic-treated group (AB + Prob) had significantly more Parabacteroides (P.) goldsteinii after one week of antibiotic and probiotic intervention but fewer antibiotic resistance genes (ARGs)-possessing bacteria (Clostridioides difficile and Burkholderiales bacterium). Consistently, metabolomics data revealed that both probiotic groups had more acetic acid, propionic acid, butyric acid, and valeric acid post treatment. Moreover, a potential probiotic species, P. goldsteinii, strongly correlated with L. casei, as well as propionic acid, butyric acid, and valeric acid. Furthermore, administering probiotic lowered the serum IL-1α level. In contrast, the antibiotic-recipients had a higher irreversible level of IL-1α, suggesting inflammation of the rats. Thus, antibiotic treatment not only led to host gut dysbiosis, but inflammatory responses and an increase in gut ARGs. Daily L. casei Zhang supplementation could alleviate the side effect of cefdinir intervention and facilitate the restoration of gut microbial homeostasis, and these probiotic effects might involve P. goldsteinii-mediated beneficial activities.

2.
Foods ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34681370

RESUMO

Spontaneously fermented dairy products have a long history, and present diverse microorganisms and unique flavors. To provide insight into the bacterial diversity, 80 different types of spontaneously fermented dairy product samples' sequence data that were downloaded from MG-RAST and NCBI and 8 koumiss and 4 shubat were sequenced by the PacBio SMRT sequencing platform. All samples including butter, sour cream, cottage cheese, yogurt, koumiss, shubat, and cheese, were collected from various regions in Russia, Kazakhstan, Mongolia and Inner Mongolia (China). The results revealed that Firmicutes and Proteobacteria were the most dominant phyla (>99%), and 11 species were identified with a relative abundance exceeding 1%. Furthermore, Streptococcus salivarius, Lactobacillus helveticus, Lactobacillus delbrueckii, Enterobacter xiangfangensis, and Acinetobacter baumannii were the primary bacterial species in the fermented dairy product samples. Principal coordinates analysis showed that koumiss and shubat stood out from the other samples. Moreover, permutational ANOVA tests revealed that the types of fermented dairy products and geographical origin significantly affected microbial diversity. However, different processing techniques did not affect microbial diversity. In addition, results of hierarchical clustering and canonical analysis of the principal coordinates were consistent. In conclusion, geographical origin and types of fermented dairy products determined the bacterial diversity in spontaneously fermented dairy product samples.

3.
Microbiol Spectr ; 9(2): e0085921, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612663

RESUMO

Asthma is a multifactorial disorder, and microbial dysbiosis enhances lung inflammation and asthma-related symptoms. Probiotics have shown anti-inflammatory effects and could regulate the gut-lung axis. Thus, a 3-month randomized, double-blind, and placebo-controlled human trial was performed to investigate the adjunctive efficacy of probiotics in managing asthma. Fifty-five asthmatic patients were randomly assigned to a probiotic group (n = 29; received Bifidobacterium lactis Probio-M8 powder and Symbicort Turbuhaler) and a placebo group (n = 26; received placebo and Symbicort Turbuhaler), and all 55 subjects provided details of their clinical history and demographic data. However, only 31 patients donated a complete set of fecal and blood samples at all three time points for further analysis. Compared with those of the placebo group, co-administering Probio-M8 with Symbicort Turbuhaler significantly decreased the fractional exhaled nitric oxide level at day 30 (P = 0.049) and improved the asthma control test score at the end of the intervention (P = 0.023). More importantly, the level of alveolar nitric oxide concentration decreased significantly among the probiotic receivers at day 30 (P = 0.038), and the symptom relief effect was even more obvious at day 90 (P = 0.001). Probiotic co-administration increased the resilience of the gut microbiome, which was reflected by only minor fluctuations in the gut microbiome diversity (P > 0.05, probiotic receivers; P < 0.05, placebo receivers). Additionally, the probiotic receivers showed significantly changes in some species-level genome bins (SGBs), namely, increases in potentially beneficial species Bifidobacterium animalis, Bifidobacterium longum, and Prevotella sp. CAG and decreases in Parabacteroides distasonis and Clostridiales bacterium (P < 0.05). Compared with that of the placebo group, the gut metabolic potential of probiotic receivers exhibited increased levels of predicted microbial bioactive metabolites (linoleoyl ethanolamide, adrenergic acid, erythronic acid) and serum metabolites (5-dodecenoic acid, tryptophan, sphingomyelin) during/after intervention. Collectively, our results suggested that co-administering Probio-M8 synergized with conventional therapy to alleviate diseases associated with the gut-lung axis, like asthma, possibly via activating multiple anti-inflammatory pathways. IMPORTANCE The human gut microbiota has a potential effect on the pathogenesis of asthma and is closely related to the disease phenotype. Our trial has demonstrated that co-administering Probio-M8 synergized with conventional therapy to alleviate asthma symptoms. The findings of the present study provide new insights into the pathogenesis and treatment of asthma, mechanisms of novel therapeutic strategies, and application of probiotics-based therapy.

4.
J Dairy Sci ; 104(10): 10528-10539, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34334203

RESUMO

The growth behaviors and metabolomic profiles in yogurts induced by multistrain probiotics of Lactobacillus casei Zhang (LCZ) and Bifidobacterium lactis V9 (V9) at the fermentation termination and 10 d of storage at 4°C under different fermentation temperatures (37°C and 42°C) were compared using metabolomics based on liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The growths of LCZ and V9 were affected by fermentation temperatures; the viable cell density of LCZ was higher at 37°C than that at 42°C; however, V9 was higher at 42°C. Multistrain probiotics had higher contribution to the changes in volatile and nonvolatile metabolomic profiles at 42°C than those at 37°C. At fermentation termination, there were 2 common enriched pathways increased by multistrain probiotics at 37°C and 42°C, which were biosynthesis of peptides and amino- and nucleotide-sugar metabolism. At 10 d of storage, 4 common increased enriched pathways were alanine, aspartate and glutamate metabolism; tyrosine metabolism; valine, leucine, and isoleucine degradation; and valine, leucine, and isoleucine biosynthesis. This work provided a detailed insight into different effects of different multistrain probiotics of LCZ and V9 fermentation temperatures on the growth behaviors and volatile and nonvolatile metabolomic profiles of yogurts.


Assuntos
Bifidobacterium animalis , Lactobacillus casei , Probióticos , Animais , Fermentação , Metabolômica , Leite , Temperatura , Iogurte/análise
5.
J Dairy Sci ; 104(10): 10609-10627, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34253372

RESUMO

Accurately profiling and characterizing factors shaping raw milk microbiota would provide practical information for detecting microbial contamination and unusual changes in milk. The current work was an observational study aiming to profile the microbiota of raw milk collected across wide geographic regions in China in different seasons and to investigate the contribution of geographical, seasonal, and environmental factors in shaping the raw milk microbiota. A total of 355 raw cow milk samples from healthy Holsteins and 41 environmental samples (farm soil and surface of milking room floor) were collected from 5 dairy farms in 5 Chinese provinces (namely, Daqing in Heilongjiang province, Jiaozuo in Henan province, Qingyuan in Guangdong province, Suqian in Jiangsu province, and Yinchuan in Ningxia Hui Autonomous Region) in January, May, and September 2018. The microbial communities in raw milk and farm environmental samples were determined using the PacBio small-molecule real-time circular consensus sequencing, which generated high-fidelity microbiota profiles based on full-length 16S rRNA genes; such technology was advantageous in producing accurate species-level information. Our results showed that both seasonality and sampling region were significant factors influencing the milk microbiota; however, the raw milk microbiota was highly diverse according to seasonality, and sampling region was the less determining factor. The wide variation in raw milk microbial communities between samples made it difficult to define a representative species-level core milk microbiota. Nevertheless, 3 most universal milk-associated species were identified: Lactococcus lactis, Enhydrobacter aerosaccus, and Acinetobacter lwoffii, which were consistently detected in 99%, 95%, and 94% of all analyzed milk samples, respectively (n = 355). The top taxa accounting for the overall seasonal microbiota variation were Bacillus (Bacillus cereus, Bacillus flexus, Bacillus safensis), Lactococcus (Lactococcus lactis, Lactococcus piscium, Lactococcus raffinolactis), Lactobacillus (Lactobacillus helveticus, Lactobacillus delbrueckii), Lactiplantibacillus plantarum, Streptococcus agalactiae, Enhydrobacter aerosaccus, Pseudomonas fragi, and Psychrobacter cibarius. Unlike the milk microbiota, the environmental microbiota did not exhibit obvious pattern of seasonal or geographic variation. However, this study was limited by the relatively low number and types of environmental samples, making it statistically not meaningful to perform further correlation analysis between the milk and environmental microbiota. Nevertheless, this study generated novel information on raw milk microbiota across wide geographic regions of China and found that seasonality was more significant in shaping the raw milk microbiota compared with geographic origin.


Assuntos
Microbiota , Leite , Acinetobacter , Animais , Bacillus , Bovinos , Feminino , Microbiologia de Alimentos , Lactococcus , Psychrobacter , RNA Ribossômico 16S/genética , Rhodospirillales
6.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34292863

RESUMO

Mastitis is the economically most important disease of dairy cows. This study used PacBio single-molecule real-time sequencing technology to sequence the full-length 16S rRNAs from 27 milk samples (18 from mastitis and nine from healthy cows; the cows were at different stages of lactation). We observed that healthy or late stage milk microbiota had significantly higher microbial diversity and richness. The community composition of the microbiota of different groups also varied greatly. The healthy cow milk microbiota was predominantly comprised of Lactococcus lactis, Acinetobacter johnsonii, and Bacteroides dorei, while the milk from mastitis cows was predominantly comprised of Bacillus cereus. The prevalence of L. lactis and B. cereus in the milk samples was confirmed by digital droplets PCR. Differences in the milk microbiota diversity and composition could suggest an important role for some these microbes in protecting the host from mastitis while others associated with mastitis. The results of our research serve as useful references for designing strategies to prevent and treat mastitis.

7.
Genomics ; 113(5): 3373-3380, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34311046

RESUMO

Probiotics have attracted much attention because of their health-promoting effects, but little is known about the in vivo evolution of probiotics. This study analyzed the genome adaptation of the probiotic Lactiplantibacillus plantarum P-8 strain cultivated in ordinary and glucose restrictive growth media. Then, this study re-analyzed genomes of P-8 isolates recovered from the gut contents of subjects in two feeding trials (in rat and human). The sampling time points were similar to that of the in vitro evolution experiment, which might give parallel comparison of the in vitro and in vivo evolution processes. Our results showed that intra-individual specific microbial genomic variants of the original strain were detected in all human and some rat subjects. The divergent patterns of evolution within the host gastrointestinal tract suggested intra-individual-specific environmental adaptation. Based on comprehensive analysis of adapted-isolates recovered from these experiments, our results showed that the energy restriction was not the main driving force for evolution of probiotics. The individual-specific adaptation of probiotics might partially explain the varying extent of health effects seen between different individuals after probiotic consumption. In addition, the results suggest that probiotics should not only adapt to the environment of the birth canal, but also adapt to other species in the gut, revealing the Red Queen hypothesis in the process of intestinal flora.

8.
World J Microbiol Biotechnol ; 37(7): 127, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181131

RESUMO

This study investigated the effect of inoculating Lactobacillus (L.) plantarum PS-8 in fermentation of alfalfa silages. We monitored the fermentation characteristics and bacterial population dynamics during the ensiling process. PacBio single molecule real time sequencing was combined with propidium monoazide (PMA) treatment to monitor the viable microbiota dynamics. We found that inoculating L. plantarum PS-8 may improve the silage quality by accelerating acidification, reducing the amounts of clostridia, coliform bacteria, molds and yeasts, elevating the protein and organic acid contents (except butyrate), and enhancing lactic acid bacteria (LAB) while suppressing harmful microorganisms. Some significant differential abundant taxa were found between the PMA-treated and non-treated microbiota. For example, the relative abundances of L. brevis, L. plantarum, and Pediococcus pentosaceus were significantly higher in the PMA-treated group than the non-PMA-treated group, suggesting obvious differences between the viable and non-viable microbiota. It would thus be necessary to distinguish between the viable and non-viable microbial communities to further understand their physiological contribution in silage fermentation. By tracking the dynamics of viable microbiota in relation with changes in the physico-chemical parameters, our study provided novel insights into the beneficial effects of inoculating L. plantarum PS-8 in silage fermentation and the physiological function of the viable bacterial communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fungos/crescimento & desenvolvimento , Lactobacillus plantarum/crescimento & desenvolvimento , Medicago sativa/microbiologia , Microbiota , Silagem/microbiologia , Azidas/análise , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano , Fermentação , Lactobacillales/crescimento & desenvolvimento , Medicago sativa/metabolismo , Propídio/análogos & derivados , Propídio/análise
9.
Front Nutr ; 8: 669808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179059

RESUMO

The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which rages all over the world and seriously threatens human life and health. Currently, there is no optimal treatment for COVID-19, and emerging evidence found that COVID-19 infection results in gut microbiota dysbiosis. The intestinal microbial richness of patients of COVID-19 does not return to normal levels even six months after recovery, but probiotic adjunctive treatment has been found to restore gut homeostasis. An updated PubMed search returned four finished clinical trials that supported the use of probiotics as adjunctive treatment for COVID-19, while at least six clinical trials aiming to investigate beneficial effects of probiotic intake in managing COVID-19 are currently in progress worldwide. Here in we tentatively summarized the understanding of the actions and potential mechanisms of probiotics in the management of COVID-19. We also highlighted some future needs for probiotic researchers in the field. The success in using probiotics as adjunctive treatment for COVID-19 has expanded the scope of application of probiotics, meanwhile deepening our knowledge in the physiological function of probiotics in modulating the gut-lung axis.

10.
Front Immunol ; 12: 643420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828554

RESUMO

Lactobacillus (L.) plantarum strains, belong to lactic acid bacteria group, are considered indispensable probiotics. Here, we performed meta-analysis to evaluate the regulatory effects of L. plantarum on the immunity during clinical trials. This meta-analysis was conducted by searching across four most common literature databases, namely, Cochrane Central Register of Controlled Trials, Web of Science, Embase, and PubMed. Clinical trial articles that met the inclusion and exclusion criteria were analyzed by Review Manager (version 5.3). p-value < 0.05 of the total effect was considered statistically significant. Finally, total of 677 references were retrieved, among which six references and 18 randomized controlled trials were included in the meta-analysis. The mean differences observed at 95% confidence interval: interleukin (IL)-4, -0.48 pg/mL (-0.79 to -0.17; p < 0.05); IL-10, 9.88 pg/mL (6.52 to 13.2; p < 0.05); tumor necrosis factor (TNF)-α, -2.34 pg/mL (-3.5 to -1.19; p < 0.05); interferon (IFN)-γ, -0.99 pg/mL (-1.56 to -0.41; p < 0.05). Therefore, meta-analysis results suggested that L. plantarum could promote host immunity by regulating pro-inflammatory and anti-inflammatory cytokines.


Assuntos
Citocinas/imunologia , Lactobacillus plantarum , Probióticos/uso terapêutico , Citocinas/sangue , Humanos , Inflamação/sangue , Inflamação/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
J Dairy Sci ; 104(7): 7509-7521, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33814153

RESUMO

There has been a growing interest in cofermentation of starter cultures with probiotics in milk. In this study, we analyzed the effects of adding the single probiotics Lactobacillus casei Zhang (Zhang) or Bifidobacterium animalis ssp. lactis Probio-M8 (M8) or a combination of Zhang and M8 to starter cultures on volatile and nonvolatile metabolomic profiles after 14 d of storage at 4°C and compared using a liquid chromatography-tandem mass spectrometry (LC-MS) and GC-MS-based metabolomics approach. Principal component analysis, heatmap plots, and Spearman correlation results showed that Zhang alone had a greater effect on volatile and nonvolatile metabolomic profiles than M8 alone. The combination of Zhang and M8 had additive effects on the production of metabolites. For volatile metabolites, the levels of acetaldehyde, diacetyl, acetoin, and acetic acid were higher for the combination of Zhang and M8 compared with either single probiotic culture. Significantly increased nonvolatile components induced by adding Zhang were identified were enriched in the galactose, amino- and nucleotide sugar, fructose and mannose, purine, phenylalanine metabolism, and arginine biosynthesis pathways. The metabolism and biosynthesis of starch, sucrose, tyrosine, galactose metabolism, and aminoacyl-tRNA biosynthesis were significantly upregulated by adding the combination of Zhang and M8. This work provides a detailed insight into different effects of Zhang and M8 used alone or in combination on the volatile and nonvolatile metabolomic profiles of yogurts.


Assuntos
Bifidobacterium animalis , Lactobacillus casei , Probióticos , Animais , Fermentação , Metabolômica , Iogurte
12.
Food Res Int ; 140: 109839, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648165

RESUMO

The health-promoting attributes of bifidobacteria have piqued interest of researchers worldwide. However, scant published studies are available pertinent to bifidobacteria in microbiota/metagenomics datasets due to its intrinsic low abundance and limitations of detection methods. In this work, we designed a procedure to optimize the detection of the bifidobacterial population in complex biological samples with single-molecule real-time sequencing (SMRT) technology, including one primer pair designated as Bif-6 and a Bifidobacterium-specific database. The optimized procedure detected 14 bifidobacterial species/subspecies in ten human stool samples (2024 sequences per sample) and eight breast milk samples (3473 sequences per sample), respectively. Furthermore, by using the optimized procedure of SMRT, we investigated the effect of a 4-week-intervention of probiotic fermented milk (PFM; 200 g/day) on the gut bifidobacteria population of adults. The results showed that consuming PFM changed the structure and enterotype-like clusters of Bifidobacterium. After the consumption of PFM, the level of gut Bifidobacterium animalis increased significantly, replacing several originally dominating taxa in some subjects, including B. catenulatum, B. breve, and B. bifidum. On the other hand, B. adolescentis was, unaffectedly, the representative species in subjects having an original enterotype-like cluster of B. adolescentis. In conclusion, our work designed a procedure for detecting the bifidobacterial population in complex samples. By applying the currently designed procedure, we found that the PFM intervention changed the bifidobacterial enterotype-like cluster of some subjects, and such change was dependent on the basal bifidobacterial population.


Assuntos
Bifidobacterium animalis , Probióticos , Adulto , Animais , Bifidobacterium , Feminino , Humanos , Leite
13.
Neurobiol Stress ; 14: 100294, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33511258

RESUMO

Stress has been shown to disturb the balance of human intestinal microbiota and subsequently causes mental health problems like anxiety and depression. Our previous study showed that ingesting the probiotic strain, Lactobacillus (L.) plantarum P-8, for 12 weeks could alleviate stress and anxiety of stressed adults. The current study was a follow-up work aiming to investigate the functional role of the gut metagenomes in the observed beneficial effects. The fecal metagenomes of the probiotic (n = 43) and placebo (n = 36) receivers were analyzed in depth. The gut microbiomes of the placebo group at weeks 0 and 12 showed a significantly greater Aitchison distance (P < 0.001) compared with the probiotic group. Meanwhile, the Shannon diversity index of the placebo group (P < 0.05) but not the probiotic group decreased significantly at week 12. Additionally, significantly more species-level genome bins (SGBs) of Bifidobacterium adolescentis, Bifidobacterium longum, and Fecalibacterium prausnitzii (P < 0.01) were identified in the fecal metagenomes of the probiotic group, while the abundances of SGBs representing the species Roseburia faecis and Fusicatenibacter saccharivorans decreased significantly (P < 0.05). Furthermore, the 12-week probiotic supplementation enhanced the diversity of neurotransmitter-synthesizing/consuming SGBs and the levels of some predicted microbial neuroactive metabolites (e.g., short-chain fatty acids, gamma-aminobutyric acid, arachidonic acid, and sphingomyelin). Our results showed a potential link between probiotic-induced gut microbiota modulation and stress/anxiety alleviation in stressed adults, supporting that the gut-brain axis was involved in relieving stress-related symptoms. The beneficial effect relied not only on microbial diversity changes but more importantly gut metagenome modulations at the SGB and functional gene levels.

14.
Eur J Nutr ; 60(5): 2553-2565, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33225399

RESUMO

PURPOSE: Irritable bowel syndrome (IBS) is a functional bowel disorder. This study aimed to assess the effect of a probiotic product (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8, and Bifdobacterium animalis subsp. lactis V9) as an adjunct to a routine regimen in IBS management. METHODS: Forty-five patients with IBS were randomized into the probiotic (n = 24) and control (n = 21) groups, receiving the routine regimen with or without probiotics for 28 days, respectively. Serum and fecal samples were collected and analyzed. RESULTS: The IBS-symptom severity score (P < 0.01), serum levels of IL-6 (P < 0.01) and TNF-α (P < 0.001) were significantly lower in the probiotic group than the control group at day 28. The probiotic adjunctive treatment resulted in significant decreases in some bacterial genera that worsen IBS, such as Bacteroides (P < 0.01), Escherichia (P < 0.05), and Citrobacter (P < 0.05), significant decreases were also observed in some beneficial genera in the control group, including Bifidobacterium (P < 0.05), Eubacterium (P < 0.05), Dorea (P < 0.01), and Butyricicoccus (P < 0.05). Furthermore, significant correlations were found between some monitored parameters and compositional changes in the fecal microbiota, suggesting that the clinical improvement of IBS was likely associated with gut microbiota modulation. The enterotype analysis revealed that the initial fecal microbiota composition could influence clinical outcomes. CONCLUSIONS: The adjunctive use of probiotics with a routine regimen showed additional clinical effectiveness compared to the routine regimen alone in managing IBS. A pretreatment gut microbiome analysis might help tailor a personalized probiotic regimen to optimize treatment effects.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Probióticos , Bifidobacterium , Humanos , Inflamação , Síndrome do Intestino Irritável/terapia , Resultado do Tratamento
15.
Food Microbiol ; 94: 103651, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279076

RESUMO

Lactobacillus (L.) helveticus is widely used in food industry due to its high proteolytic activity. However, such activity varies greatly between isolates, and the determining factors regulating the strength of proteolytic activity in L. helveticus are unclear. This study sequenced the genomes of 60 fermented food-originated L. helveticus and systemically examined the proteolytic activity-determining factors. Our analyses found that the strength of proteolytic activity in L. helveticus was independent of the isolation source, geographic location, phylogenetic closeness between isolates, and distribution of cell envelope proteinases (CEPs). Genome-wide association study (GWAS) identified two genes, the acetate kinase (ackA) and a hypothetical protein, and 15 single nucleotide polymorphisms (SNPs) that were associated with the strength of the proteolytic activity. Further investigating the functions of these gene components revealed that ackA and two cysteine peptidases coding genes (pepC and srtA) rather than the highly heterogeneous and intraspecific CEPs were linked to the level of proteolytic activity. Moreover, the sequence type (ST) defined by SNP analysis revealed a total of ten STs, and significantly weaker proteolytic activity was observed among isolates of ST2. This study provides practical information for future selection of L. helveticus of strong proteolytic activity.


Assuntos
Acetato Quinase/metabolismo , Proteínas de Bactérias/metabolismo , Laticínios/microbiologia , Grão Comestível/microbiologia , Alimentos e Bebidas Fermentados/microbiologia , Lactobacillus helveticus/enzimologia , Peptídeo Hidrolases/metabolismo , Acetato Quinase/química , Acetato Quinase/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bovinos , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Lactobacillus helveticus/genética , Lactobacillus helveticus/isolamento & purificação , Lactobacillus helveticus/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Proteólise
16.
Microb Biotechnol ; 13(6): 2032-2043, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32969200

RESUMO

This was a pilot study aiming to evaluate the effects of probiotics as adjunctive treatment for ulcerative colitis (UC). Twenty-five active patients with UC were assigned to the probiotic (n = 12) and placebo (n = 13) groups. The probiotic group received mesalazine (60 mg kg-1  day-1 ) and oral probiotics (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8 and Bifidobacterium animalis subsp. lactis V9) twice daily for 12 weeks, while the placebo group received the same amounts of mesalazine and placebo. The clinical outcomes were assessed. The gut mucosal microbiota was profiled by PacBio single-molecule, real-time (SMRT) sequencing of the full-length 16S rRNA of biopsy samples obtained by colonoscopy. A significantly greater magnitude of reduction was observed in the UC disease activity index (UCDAI) in the probiotic group compared with the placebo group (P = 0.043), accompanying by a higher remission rate (91.67% for probiotic-receivers versus 69.23% for placebo-receivers, P = 0.034). The probiotics could protect from diminishing of the microbiota diversity and richness. Moreover, the gut mucosal microbiota of the probiotic-receivers had significantly more beneficial bacteria like Eubacterium ramulus (P < 0.05), Pediococcus pentosaceus (P < 0.05), Bacteroides fragilis (P = 0.02) and Weissella cibaria (P = 0.04). Additionally, the relative abundances of the beneficial bacteria correlated significantly but negatively with the UCDAI score, suggesting that the probiotics might alleviate UC symptoms by modulating the gut mucosal microbiota. Our research has provided new insights into the mechanism of symptom alleviation in UC by applying probiotic-based adjunctive treatment.


Assuntos
Colite Ulcerativa , Microbioma Gastrointestinal , Microbiota , Probióticos , Colite Ulcerativa/terapia , Eubacterium , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética , Weissella
17.
Gut Microbes ; 12(1): 1794266, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744162

RESUMO

The early-life gut microbiota is associated with potential development of diseases in adulthood. The sterile womb paradigm has been challenged by recent reports that revealed the presence of the meconium, amniotic fluid, and placenta microbiome. This study aimed to explore the maternal origin of the microbiota of neonate meconium by using the PacBio single-molecule real-time circular consensus sequencing technology. Such technology could produce high fidelity reads of full-length 16S rRNA genes, improving the sensitivity and specificity of taxonomic profiling. It also reduced the risk of false positives. This study analyzed the full-length 16S rRNA-based microbiota of maternal samples (amniotic fluid, feces, vaginal fluid, saliva) and first-pass meconium of 39 maternal-neonate pairs. Alpha- and beta-diversity analyses revealed sample type-specific microbiota features. Most sample types were dominated by sequences representing different genera (Lactobacillus and Curvibacter in the amniotic fluid and vaginal fluid microbiota; Bacillus and Escherichia/Shigella in the meconium microbiota; Bacteroides and Faecalibacterium in the maternal fecal microbiota; Streptococcus and Prevotella in the maternal saliva microbiota). Moreover, specific operational taxonomic units (OTUs) were identified in all sample types. Dyad analysis revealed common OTUs between the meconium microbiota and microbiota of multiple maternal samples. The meconium microbiota shared more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Our results strongly suggested that the meconium microbiota was seeded from multiple maternal body sites, and the amniotic fluid microbiota contributed most to the seeding of the meconium microbiota among the investigated maternal body sites.


Assuntos
Líquido Amniótico/microbiologia , Mecônio/microbiologia , Microbiota , Adulto , Parto Obstétrico , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido , Mães , RNA Ribossômico 16S/genética , Saliva/microbiologia , Vagina/microbiologia , Adulto Jovem
18.
J Dairy Sci ; 103(10): 8791-8795, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32861486

RESUMO

Bifidobacterium animalis ssp. lactis Probio-M8 is a potential probiotic strain that was isolated from human milk. Previously, we obtained an oxygen-resistant variant (Probio-M8o) of Probio-M8 by an adaptive evolution strategy. In the present study, a comparative transcriptomic analysis of Probio-M8o and Probio-M8 was carried out to reveal the cellular mechanism of the oxygen-resistant phenotype. Using RNA-seq, 210 and 217 differentially expressed genes were identified in Probio-M8o compared with Probio-M8 after oxygen exposure for 30 and 60 min, respectively. The oxygen treatment upregulated a set of genes that encoded proteins responsible for fatty acid biosynthesis. This observation was in good agreement with the composition change in fatty acids at the biochemical level. Our study showed that the oxygen-resistant phenotype could be related to adaptation of fatty acid metabolism.


Assuntos
Bifidobacterium animalis/metabolismo , Oxigênio/metabolismo , Probióticos/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Humanos , Leite Humano/microbiologia , RNA-Seq
19.
J Dairy Sci ; 103(7): 5893-5905, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32389475

RESUMO

Jiaoke is a traditional Mongolian fermented dairy product that is nutritious and has a unique taste. It is made from the fat separated from fermented milk. In this study, we collected 24 jiaoke samples from the Xilingol region of Inner Mongolia. The microbiota composition of the collected samples was analyzed using 16S rRNA small-molecule real-time sequencing, and the lactic acid bacteria (LAB) population was enumerated and isolated by laboratory culture techniques. We used an electronic tongue device to assess the taste quality of the products. One hundred fifty LAB isolates (5 genera and 14 species) were recovered and identified by 16S rRNA sequencing across all samples. Lactococcus lactis and Lactobacillus plantarum accounted for 51.33% and 10.67% of the total isolates, respectively. The small-molecule real-time sequencing of full-length 16S rRNAs revealed an overall bacterial microbiota composition of 10 phyla, 121 genera, and 186 species, largely represented by sequences of Lactococcus (68.46%) and Lactococcus lactis (52.92%) at the genus and species levels, respectively. The electronic tongue analysis revealed that the sweetness, bitterness, sourness, and saltiness of jiaoke varied greatly between samples. The presence of Lactococcus lactis correlated positively with bitter aftertaste; the presence of Lactococcus piscium correlated positively with umami and negatively with astringent and bitter aftertastes; and the presence of Lactobacillus helveticus correlated positively with sourness and negatively with other taste qualities. These results suggest that the microbiota composition and product taste are closely related. The novel LAB strains collected in this work represent valuable natural microbial resources.


Assuntos
Bactérias/isolamento & purificação , Produtos Fermentados do Leite/microbiologia , Microbiota , China , Microbiologia de Alimentos , Lactobacillales/isolamento & purificação , Lactobacillus plantarum/isolamento & purificação , Lactococcus lactis/isolamento & purificação , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
20.
J Dairy Sci ; 103(3): 2128-2138, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928753

RESUMO

Ultra-performance liquid chromatography coupled with a quadrupole-time-of-flight mass spectrometryElevated Energy was used to investigate changes in the metabolite profile of brown milk and fermented brown milk produced using Streptococcus thermophilus S10. Samples were analyzed in both positive and negative electron ionization modes. Data were analyzed by multivariate statistical methods for biomarker metabolites that were differentially abundant in brown milk and fermented brown milk. We identified 43 differentially abundant metabolites based on mass spectrophotometry fragmentation patterns. These metabolites included peptides, AA, fatty acids and related metabolites, carbohydrate metabolites, vitamins, and nucleosides. Some of these metabolites are known to alter the sensorial quality of fermented dairy products. Thus, it is likely that some of the currently identified differentially abundant metabolites also contribute to the unique flavor, taste, and aroma of fermented brown milk. The bitterness and astringency of fermented brown milk are likely to be due to some of these peptides, whereas the sweetness and sourness could be a result of changes in carbohydrate levels. No previous study has analyzed metabolomics changes during fermentation of brown milk. Thus, our data are a valuable reference for future development and improvement of fermented brown milk products.


Assuntos
Produtos Fermentados do Leite/análise , Streptococcus thermophilus/metabolismo , Animais , Produtos Fermentados do Leite/microbiologia , Espectrometria de Massas , Metabolômica , Proteínas do Leite/análise , Pegadas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...