Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 145(5): 1915-1924, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31989131

RESUMO

Gas sensors are important devices used to monitor the type and amount of gas present. Amperometric gas sensors - based on measuring the current upon an applied potential - have been progressing towards miniaturised designs that are smaller, lower cost, faster responding and more robust compared to commercially available sensors. In this work, a planar thin-film electrode device is employed for gas sensing with a thin layer of gel polymer electrolyte (GPE). The GPE consists of a room temperature ionic liquid (RTIL, with two different imidazolium cations and the tetrafluoroborate [BF4]- anion) mixed with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). The polymer acts as a scaffold, with the RTIL ions able to flow within the porous percolated channels, resulting in a highly robust gel with high conductivity. The chemical nature of the polymer allows thin-films (ca. 6 µm) to be evenly dropcast onto planar electrode devices, using minimal amounts of material. Remarkably, no significant effect of resistance was observed in the voltammetric response with such thin films. Oxygen (O2) and ammonia (NH3) gases were detected in the concentration ranges 1-20% O2 and 1-10 ppm NH3 in the two GPEs using both linear sweep voltammetry (LSV) and long-term chronoamperometry (LTCA). LTCA was the preferred detection method for both gases due to the steady-state current response compared to the sloping current response from LSV. The thin nature of the film gave fast response times for both gases - less than 10 seconds for O2 and ca. 40 seconds for NH3 - easily rivaling the commercially available porous electrode designs and allowing for continuous monitoring of gas concentrations. These materials appear to be highly promising candidates as gas detection electrolytes in miniaturised devices, with accurate and fast responses in both the cathodic and anodic potential regions.

2.
J Am Chem Soc ; 141(4): 1766-1774, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30621401

RESUMO

In the present contribution, we report how through the use of metal-organic frameworks (MOFs) composed of addressable combinations of up to four different metal elements it is possible to program the composition of multimetal oxides, which are not attainable by other synthetic methodologies. Thus, due to the ability to distribute multiple metal cations at specific locations in the MOF secondary building units it is possible to code and transfer selected metal ratios to multimetal oxides with novel, desired compositions through a simple calcination process. The demonstration of an enhancement in the electrocatalytic activity of new oxides by preadjusting the metal ratios is here reported for the oxygen reduction reaction, for which activity values comparable to commercial Pt/C catalysts are reached, while showing long stability and methanol tolerance.

3.
Adv Mater ; 31(13): e1805719, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30561777

RESUMO

Carbon nanomaterials doped with some other lightweight elements were recently described as powerful, heterogeneous, metal-free organocatalysts, adding to their high performance in electrocatalysis. Here, recent observations in traditional catalysis are reviewed, and the underlying reaction mechanisms of the catalyzed organic transformations are explored. In some cases, these are due to specific active functional sites, but more generally the catalytic activity relates to collective properties of the conjugated nanocarbon frameworks and the electron transfer from and to the catalytic centers and substrates. It is shown that the learnings are tightly related to those of electrocatalysis; i.e., the search for better electrocatalysts also improves chemocatalysis, and vice versa. Carbon-carbon heterojunction effects and some perspectives on future possibilities are discussed at the end.


Assuntos
Carbono/química , Nanoestruturas/química , Ácidos/química , Boro/química , Catálise , Técnicas Eletroquímicas/métodos , Elétrons , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Nanoestruturas/ultraestrutura , Nitrogênio/química , Oxirredução , Enxofre/química
4.
ChemSusChem ; 7(12): 3347-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25318464

RESUMO

A template-free approach based on the use of eutectic mixtures composed of 2-hydroxymethylthiophene and furfuryl alcohol has been designed for the preparation of hierarchical sulfur-doped carbons (SPCs) in monolithic form. The temperature used for carbonization, for example, 600, 800, or 900 °C, determined most of the physicochemical properties of the resulting SPCs. Thus, the surface area increased from below 400 to up 775 m(2) g(-1) , along with the carbonization temperature, whereas the sulfur content decreased from approximately 15 to 5 wt %. The oxygen reduction reaction performance in samples carbonized at 900 °C was good, with the four-electron-transfer reaction prevailing over the two-electron-transfer one. Interestingly, the methanol tolerance and stability of these SPCs were also remarkable, with less than 5% current decrease immediately after methanol addition, whereas, in terms of stability, the current decrease was below 8 % after 20000 s. This performance was in the range of that found not only for other SPCs, but also for many nitrogen-doped and even some dual-doped (S and N) ones.


Assuntos
Carbono/química , Enxofre/química , Tiofenos/química , Catálise , Misturas Complexas , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Oxirredução , Oxigênio/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA