Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32391696

RESUMO

The employment of 2D perovskites is a promising approach to tackling the stability and voltage issues inherent in perovskite solar cells. It remains unclear, however, whether other perovskites with different dimensionalities have the same effect on efficiency and stability. Here, we report the use of quasi-3D azetidinium lead iodide (AzPbI3) as a secondary layer on top of the primary 3D perovskite film that results in significant improvements in the photovoltaic parameters. Remarkably, the utilization of AzPbI3 leads to a new passivation mechanism due to the presence of surface dipoles resulting in a power conversion efficiency (PCE) of 22.4%. The open-circuit voltage obtained is as high as 1.18 V, which is among the highest reported to date for single junction perovskite solar cells, corresponding to a voltage deficit of 0.37 V for a band gap of 1.55 eV.

2.
Nat Commun ; 10(1): 3648, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409780

RESUMO

We show how the kinetics of a fast and irreversible chemical reaction in a nanocrystalline material at high temperature can be studied using nanosecond electron pulses in an electron microscope. Infrared laser pulses first heat a nanocrystalline oxide layer on a carbon film, then single nanosecond electron pulses allow imaging, electron diffraction and electron energy-loss spectroscopy. This enables us to study the evolution of the morphology, crystallography, and elemental composition of the system with nanosecond resolution. Here, NiO nanocrystals are reduced to elemental nickel within 5 µs after the laser pulse. At high temperatures induced by laser heating, reduction results first in a liquid nickel phase that crystallizes on microsecond timescales. We show that the reaction kinetics in the reduction of nanocrystalline NiO differ from those in bulk materials. The observation of liquid nickel as a transition phase explains why the reaction is first order and occurs at high rates.

3.
Nat Commun ; 9(1): 4482, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367070

RESUMO

Perovskite solar cells present one of the most prominent photovoltaic technologies, yet their stability, scalability, and engineering at the molecular level remain challenging. We demonstrate a concept of multifunctional molecular modulation of scalable and operationally stable perovskite solar cells that exhibit exceptional solar-to-electric power conversion efficiencies. The judiciously designed bifunctional molecular modulator SN links the mercapto-tetrazolium (S) and phenylammonium (N) moieties, which passivate the surface defects, while displaying a structure-directing function through interaction with the perovskite that induces the formation of large grain crystals of high electronic quality of the most thermally stable formamidinium cesium mixed lead iodide perovskite formulation. As a result, we achieve greatly enhanced solar cell performance with efficiencies exceeding 20% for active device areas above 1 cm2 without the use of antisolvents, accompanied by outstanding operational stability under ambient conditions.

4.
Ultramicroscopy ; 188: 41-47, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29547872

RESUMO

We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction.

5.
Adv Healthc Mater ; 6(4)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28116855

RESUMO

Prostate cancer (PCa) is one of the leading causes of death among men. Low-dose brachytherapy is an increasingly used treatment for PCa, which requires the implantation of tens of radioactive seeds. This treatment causes discomfort; these implants cannot be removed, and they generate image artifacts. In this study, the authors report on intratumoral injections of radioactive gold nanoparticles (Au NPs) as an alternative to seeds. The particles (103 Pd:Pd@Au-PEG and 103 Pd:Pd@198 Au:Au-PEG; 10-14 nm Pd@Au core, 36-48 nm hydrodynamic diameter) are synthesized by a one-pot process and characterized by electron microscopy. Administrated as low volume (2-4 µL) single doses (1.6-1.7 mCi), the particles are strongly retained in PCa xenograft tumors, impacting on their growth rate. After 4 weeks, a tumor volume inhibition of 56% and of 75%, compared to the controls, is observed for 103 Pd:Pd@Au-PEG NPs and 103 Pd:Pd@198 Au:Au-PEG NPs, respectively. Skin necrosis is observed with 198 Au; therefore, Au NPs labeled with 103 Pd only are a more advisable choice. Overall, this is the first study confirming the impact of 103 Pd@Au NPs on tumor growth. This new brachytherapy procedure could allow tunable doses of radioactivity, administered with smaller needles than with the current technologies, and leading to fewer image artifacts.


Assuntos
Braquiterapia/métodos , Ouro , Nanopartículas , Paládio , Neoplasias da Próstata/radioterapia , Animais , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Paládio/química , Paládio/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Commun ; 7: 13156, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725670

RESUMO

Capturing and controlling plasmons at buried interfaces with nanometre and femtosecond resolution has yet to be achieved and is critical for next generation plasmonic devices. Here we use light to excite plasmonic interference patterns at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is followed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at ∼0.3 times the speed of light, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. This work, demonstrating dynamical imaging with PINEM, paves the way for the femtosecond and nanometre visualization and control of plasmonic fields in advanced heterostructures based on novel two-dimensional materials such as graphene, MoS2, and ultrathin metal films.

7.
Ultramicroscopy ; 170: 86-95, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27566048

RESUMO

This review article discusses the current and future possibilities for the application of in situ transmission electron microscopy to reveal synthesis pathways and functional mechanisms in complex and nanoscale materials. The findings of a group of scientists, representing academia, government labs and private sector entities (predominantly commercial vendors) during a workshop, held at the Center for Nanoscale Science and Technology- National Institute of Science and Technology (CNST-NIST), are discussed. We provide a comprehensive review of the scientific needs and future instrument and technique developments required to meet them.

8.
Nano Lett ; 16(4): 2159-67, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26918518

RESUMO

In the past decade, nanomaterials have made their way into a variety of technologies in solar energy, enhancing the performance by taking advantage of the phenomena inherent to the nanoscale. Recent examples exploit plasmonic core/shell nanoparticles to achieve efficient direct steam generation, showing great promise of such nanoparticles as a useful material for solar applications. In this paper, we demonstrate a novel technique for fabricating bimetallic hollow mesoporous plasmonic nanoshells that yield a higher solar vapor generation rate compared with their solid-core counterparts. On the basis of a combination of nanomasking and incomplete galvanic replacement, the hollow plasmonic nanoshells can be fabricated with tunable absorption and minimized scattering. When exposed to sun light, each hollow nanoshell generates vapor bubbles simultaneously from the interior and exterior. The vapor nucleating from the interior expands and diffuses through the pores and combines with the bubbles formed on the outer wall. The lack of a solid core significantly accelerates the initial vapor nucleation and the overall steam generation dynamics. More importantly, because the density of the hollow porous nanoshells is essentially equal to the surrounding host medium these particles are much less prone to sedimentation, a problem that greatly limits the performance and implementation of standard nanoparticle dispersions.

9.
Angew Chem Int Ed Engl ; 55(1): 292-6, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26577114

RESUMO

We describe a catalytic system composed of rhodium nanoparticles immobilized in a Lewis acidic ionic liquid. The combined system catalyzes the hydrogenation of quinolines, pyridines, benzofurans, and furan to access the corresponding heterocycles, important molecules present in fine chemicals, agrochemicals, and pharmaceuticals. The catalyst is highly selective, acting only on the heteroaromatic ring, and not interfering with other reducible functional groups.

10.
Rev Sci Instrum ; 85(8): 084902, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173298

RESUMO

Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns-500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10(2) K/s-10(5) K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

11.
Nat Mater ; 12(8): 697-702, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685864

RESUMO

Coherent twin boundaries (CTBs) are widely described, both theoretically and experimentally, as perfect interfaces that play a significant role in a variety of materials. Although the ability of CTBs in strengthening, maintaining the ductility and minimizing the electron scattering is well documented, most of our understanding of the origin of these properties relies on perfect-interface assumptions. Here we report experiments and simulations demonstrating that as-grown CTBs in nanotwinned copper are inherently defective with kink-like steps and curvature, and that these imperfections consist of incoherent segments and partial dislocations. We further show that these defects play a crucial role in the deformation mechanisms and mechanical behaviour of nanotwinned copper. Our findings offer a view of the structure of CTBs that is largely different from that in the literature, and underscore the significance of imperfections in nanotwin-strengthened materials.

12.
Langmuir ; 28(49): 17168-75, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23145476

RESUMO

Using pump-probe electron microscopy techniques, the dewetting of thin nickel films exposed to a pulsed nanosecond laser was monitored at tens of nanometers spatial and nanosecond time scales to provide insight into the liquid-phase assembly dynamics. Thickness-dependent and correlated time and length scales indicate that a spinodal instability drives the assembly process. Measured lifetimes of the liquid metal are consistent with finite-difference simulations of the laser-irradiated film and are consistent with estimated and observed spinodal time scales. These results can be used to design improved synthesis and assembly routes toward achieving advanced functional nanomaterials and devices.

13.
Micron ; 43(11): 1108-20, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22595460

RESUMO

The growing field of ultrafast materials science, aimed at exploring short-lived transient processes in materials on the microsecond to femtosecond timescales, has spawned the development of time-resolved, in situ techniques in electron microscopy capable of capturing these events. This article gives a brief overview of two principal approaches that have emerged in the past decade: the stroboscopic ultrafast electron microscope and the nanosecond-time-resolved single-shot instrument. The high time resolution is garnered through the use of advanced pulsed laser systems and a pump-probe experimental platforms using laser-driven photoemission processes to generate time-correlated electron probe pulses synchronized with laser-driven events in the specimen. Each technique has its advantages and limitations and thus is complementary in terms of the materials systems and processes that they can investigate. The stroboscopic approach can achieve atomic resolution and sub-picosecond time resolution for capturing transient events, though it is limited to highly repeatable (>10(6) cycles) materials processes, e.g., optically driven electronic phase transitions that must reset to the material's ground state within the repetition rate of the femtosecond laser. The single-shot approach can explore irreversible events in materials, but the spatial resolution is limited by electron source brightness and electron-electron interactions at nanosecond temporal resolutions and higher. The first part of the article will explain basic operating principles of the stroboscopic approach and briefly review recent applications of this technique. As the authors have pursued the development of the single-shot approach, the latter part of the review discusses its instrumentation design in detail and presents examples of materials science studies and the near-term instrumentation developments of this technique.

14.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S67-74, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20548104

RESUMO

The dynamic transmission electron microscope (DTEM) offers a means of capturing rapid evolution in a specimen through in situ microscopy experiments by allowing 15-ns electron micrograph exposure times. The rapid exposure time is enabled by creating a burst of electrons at the emitter by ultraviolet pulsed laser illumination. This burst arrives at a specified time after a second laser initiates the specimen reaction. The timing of the two Q-switched lasers is controlled by high-speed pulse generators with a timing error much less than the pulse duration. Both diffraction and imaging experiments can be performed, just as in a conventional TEM. The brightness of the emitter and the total current control the spatial and temporal resolutions. We have demonstrated 7-nm spatial resolution in single 15-ns pulsed images. These single-pulse imaging experiments have been used to study martensitic transformations, nucleation and crystallization of an amorphous metal and rapid chemical reactions. Measurements have been performed on these systems that are possible by no other experimental approaches currently available.

17.
Ultramicroscopy ; 108(11): 1441-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18783886

RESUMO

Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10nm for single-shot imaging using 15ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions.

18.
Ultramicroscopy ; 107(4-5): 356-67, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17169490

RESUMO

Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10(7) electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10(-6)s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA