Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 363
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer ; 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32012241

RESUMO

BACKGROUND: With limited information on germline mutations in biliary tract cancers, this study performed somatic and germline testing for patients at Memorial Sloan Kettering Cancer Center with known biliary tract carcinoma with the aim of determining the frequency and range of pathogenic germline alterations (PGAs). METHODS: Patients with biliary tract carcinoma were consented for somatic tumor and matched blood testing of up to 468 genes via the Memorial Sloan Kettering Cancer Center Integrated Mutation Profiling of Actionable Cancer Targets next-generation sequencing platform. A germline variant analysis was performed on a panel of up to 88 genes associated with an increased predisposition for cancer. Demographic and diagnostic details were collected. RESULTS: Germline mutations were tested in 131 patients. Intrahepatic cholangiocarcinoma was the most common cancer (63.4%), and it was followed by gallbladder adenocarcinoma (16.8%), extrahepatic cholangiocarcinoma (16%), and otherwise unspecified biliary tract cancer (3.8%). Known and likely PGAs were present in 21 patients (16.0%), with 9.9% harboring a PGA in a high/moderate-penetrance cancer predisposition gene. Among high-penetrance cancer susceptibility genes, PGAs were most commonly observed in BRCA1 and BRCA2 (33.3%), which made up 5.3% of the entire cohort, and they were followed by PALB2, BAP1, and PMS2. Mutations in ATM, MITF, and NBN, moderate-penetrance cancer susceptibility genes, were identified in 1 patient each. There was no observed difference in the types of mutations among the subtypes of biliary tract cancer. CONCLUSIONS: The frequency of PGAs found was comparable to existing data on the prevalence of germline mutations in other solid tumor types with matched tumor analysis. This provides support for the role of the BRCA1/2, ATM, and BAP1 genes in biliary tract cancer susceptibility.

2.
Am J Surg Pathol ; 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32011345

RESUMO

Adenosarcoma can mimic high-grade endometrial stromal sarcoma with ZC3H7B-BCOR fusion that may show entrapped glands and often exhibits diffuse BCOR expression. We encountered diffuse BCOR expression in rare adenosarcomas and sought to define its frequency among a larger cohort of these tumors. BCOR immunohistochemistry was performed on archival formalin-fixed paraffin-embedded tumor tissue in 13 of 14 adenosarcomas with and without stromal overgrowth arising in the uterus or ovary. The staining intensity and percentage of positive tumor nuclei in the mesenchymal component were evaluated. Eleven cases with sufficient tumoral tissue were subjected to fluorescence in situ hybridization for the detection of BCOR, BCORL1, NUTM1, ZC3H7B, and JAZF1 rearrangement. Three cases were subjected to targeted RNA sequencing. BCOR was expressed in 9 of 13 (70%) tumors, including 6 with and 3 without stromal overgrowth. Moderate to strong staining in >70% of cells was seen throughout in 1 low-grade and 6 high-grade tumors, 5 of which had stromal overgrowth. No staining was seen in 3 low-grade and 1 high-grade tumors with stromal overgrowth. One tumor demonstrating extensive sex cord-like differentiation and diffuse BCOR expression harbored JAZF1 and BCORL1 rearrangements. No BCOR or BCORL1 rearrangement was identified in the remaining tumors. BCOR expression is seen in most adenosarcomas with and without stromal overgrowth. BCORL1 rearrangement is seen in rare tumors with diffuse BCOR expression. Assessment of BCOR or BCORL1 rearrangement status is required in adenosarcomas demonstrating BCOR expression.

3.
Mod Pathol ; 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047229

RESUMO

We describe a morphologically distinct pattern of tumor infarction and associated sarcoma-like changes, mimicking focal anaplasia, in otherwise WHO grade I meningiomas. The described cases (n = 9) all demonstrated a discrete spindle-cell (pseudosarcomatous) component with brisk mitotic activity (12-14 mitoses/10 HPF), elevated Ki-67 (mean 75.5 ± 25.0%, quantified), absence of PR, SSTR2A, or EMA expression, and potential SMA expression (50%). Despite these high-grade features, all nine patients remained free of progression or recurrence post resection (follow-up mean: 49.8 months). In contrast, among a comparison (control) cohort of consecutive WHO grade II and III meningiomas (n = 16), as expected, progression rate was high (68.8%, P = 0.002, Fisher's exact, average time to progression = 25 months, follow-up mean: 39.8 months). While necrosis was a frequent feature among atypical/anaplastic meningiomas (12/16, 75%), and elevated mitoses and proliferative index were present consistent with histologic grade, a well-defined zonal pattern with pseudosarcomatous component was not present among these tumors. DNA methylation-based analysis readily distinguished meningiomas by copy number profiles and DNA-based methylation meningioma random forest classification analysis (meningioma v2.4 classifier developed at University of Heidelberg); all pseudosarcomatous cases analyzed (4/9) matched with high level calibrated classifier score to "MC benign-1", with isolated loss of chromosome 22q identified as the sole copy number alteration. In contrast, multiple chromosomal losses were detected among the comparison cohort and classifier results demonstrated good concordance with histologic grade. Our findings suggest that pseudosarcomatous alterations represent reactive changes to central meningioma infarction, rather than focal anaplasia, and further support the use of DNA methylation-based analysis as a useful adjunct for predicting meningioma behavior. These indolent tumors should be distinguished from their atypical and anaplastic counterparts.

4.
Clin Cancer Res ; 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911548

RESUMO

PURPOSE: Patterns of resistance to first-line osimertinib are not well-established and have primarily been evaluated using plasma assays which cannot detect histologic transformation and have differential sensitivity for copy number changes and chromosomal rearrangements. EXPERIMENTAL DESIGN: To characterize mechanisms of resistance to osimertinib, patients with metastatic EGFR-mutant lung cancers who received osimertinib at Memorial Sloan Kettering and had next-generation sequencing performed on tumor tissue before osimertinib initiation and after progression were identified. RESULTS: Among 62 patients who met eligibility critieria, histologic transformation, primarily squamous transformation, was identified in 15% of first-line osimertinib cases and 14% of later-line cases. Nineteen percent (5/27) of patients treated with first-line osimertinib had off-target genetic resistance (2 MET amplification, 1 KRAS mutation, 1 RET fusion, and 1 BRAF fusion) whereas 4% (1/27) had an acquired EGFR mutation (EGFR G724S). Patients with squamous transformation exhibited considerable genomic complexity; acquired PIK3CA mutation, chromosome 3q amplification and FGF amplification were all seen. Patients with transformation had shorter time on osimertinib and shorter survival compared to patients with on-target resistance. Initial EGFR sensitizing mutation, time on osimertinib treatment and line of therapy also influenced resistance mechanism that emerged. The compound mutation EGFR S768 + V769L and the mutation MET H1094Y were identified and validated as resistance mechanisms with potential treatment options. CONCLUSION: Histologic transformation and other off-target molecular alterations are frequent early emerging resistance mechanisms to osimertinib and are associated with poor clinical outcomes.

8.
Clin Cancer Res ; 26(2): 419-427, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615936

RESUMO

PURPOSE: Chondrosarcomas are the second most common primary malignant bone tumors. Although histologic grade is the most important factor predicting the clinical outcome of chondrosarcoma, it is subject to interobserver variability. Isocitrate dehydrogenase 1 (IDH1) and IDH2 hotspot mutations were recently found to be frequently mutated in central chondrosarcomas. However, a few published articles have been controversial regarding the association between IDH1/IDH2 mutation status and clinical outcomes in chondrosarcomas. EXPERIMENTAL DESIGN: We performed hotspot sequencing of IDH1 and IDH2 genes in 89 central chondrosarcomas and targeted next-generation sequencing in 54 of them, and then correlated the IDH1/IDH2 mutation status with the patient's clinical outcome. RESULTS: Although no association was discovered between IDH mutation status and the patient's overall survival, IDH1/IDH2 mutation was found to be associated with longer relapse-free and metastasis-free survival in high-grade chondrosarcomas. Genomic profiling reveals TERT gene amplification and ATRX mutation, for the first time, in addition to TERT promoter mutation in a subset (6/30, 20%) of high-grade and dedifferentiated chondrosarcomas. These abnormalities in telomere genes are concurrent with IDH1/IDH2 mutation and with CDKN2A/2B deletion or TP53 mutation, suggesting a possible association and synergy among these genes in chondrosarcoma progression. We found 21% of patients with chondrosarcoma also had histories of second malignancies unrelated to cartilaginous tumors, suggesting possible unknown genetic susceptibility to chondrosarcoma. CONCLUSIONS: IDH1/IDH2 mutations are associated with longer relapse-free and metastasis-free survival in high-grade chondrosarcomas, and they tend to co-occur with TERT mutations and with CDKN2A/2B and TP53 alterations in a subset of high-grade chondrosarcomas.

9.
Mod Pathol ; 33(2): 303-311, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31537897

RESUMO

V-domain Ig-containing suppressor of T-cell activation (VISTA) is an immune checkpoint gene that inhibits anti-tumor immune responses. Since most malignant pleural mesotheliomas do not respond to anti-programmed cell death(-ligand)1 (PD-(L)1)/cytotoxic T-lymphocyte-associated protein 4 (CTLA4) therapy and given the recent finding of The Cancer Genome Atlas Study that pleural mesothelioma displays the highest expression of VISTA among all cancers studied, we examined VISTA expression in a large pleural mesothelioma cohort. VISTA and PD-L1 immunohistochemistry were performed on tissue microarray of immunotherapy-naive pleural mesotheliomas (254 epithelioid, 24 biphasic and 41 sarcomatoid) and ten whole-tissue sections of benign pleura (VISTA only). Percentages of tumor and inflammatory cells with positive staining were assessed. Optimal prognostic cutoff percentages were determined using maximally selected rank statistics. Overall survival was evaluated using Kaplan-Meier methods and Cox proportional hazard analysis. All benign mesothelium expressed VISTA. Eighty-five percent of 319 and 38% of 304 mesotheliomas expressed VISTA and PD-L1 (88% and 33% of epithelioid, 90% and 43% of biphasic, and 42% and 75% of sarcomatoid), respectively. Median VISTA score was significantly higher in epithelioid (50%) (vs. biphasic [20%] and sarcomatoid [0]) (p < 0.001), while median PD-L1 score was significantly higher in sarcomatoid tumors (20%) (vs. biphasic and epithelioid [both 0%]) (p < 0.001). VISTA and PD-L1 were expressed in inflammatory cells in 94% (n = 317) and 24% (n = 303) of mesothelioma, respectively. Optimal prognostic cutoffs for VISTA and PD-L1 were 40% and 30%, respectively. On multivariable analysis, VISTA and PD-L1 expression in mesothelioma were associated with better and worse overall survival (p = 0.001 and p = 0.002), respectively, independent of histology. In a large cohort of mesothelioma, we report frequent expression of VISTA and infrequent expression of PD-L1 with favorable and unfavorable survival correlations, respectively. These findings may explain poor responses to anti-PD-(L)1 immunotherapy and suggest VISTA as a potential novel target in pleural mesothelioma.

10.
Mod Pathol ; 33(1): 38-46, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31375766

RESUMO

With the FDA approval of larotrectinib, NTRK fusion assessment has recently become a standard part of management for patients with locally advanced or metastatic cancers. Unlike somatic mutation assessment, the detection of NTRK fusions is not straightforward, and various assays exist at the DNA, RNA, and protein level. Here, we investigate the performance of immunohistochemistry and DNA-based next-generation sequencing to indirectly or directly detect NTRK fusions relative to an RNA-based next-generation sequencing approach in the largest cohort of NTRK fusion positive solid tumors to date. A retrospective analysis of 38,095 samples from 33,997 patients sequenced by a targeted DNA-based next-generation sequencing panel (MSK-IMPACT), 2189 of which were also examined by an RNA-based sequencing assay (MSK-Fusion), identified 87 patients with oncogenic NTRK1-3 fusions. All available institutional NTRK fusion positive cases were assessed by pan-Trk immunohistochemistry along with a cohort of control cases negative for NTRK fusions by next-generation sequencing. DNA-based sequencing showed an overall sensitivity and specificity of 81.1% and 99.9%, respectively, for the detection of NTRK fusions when compared to RNA-based sequencing. False negatives occurred when fusions involved breakpoints not covered by the assay. Immunohistochemistry showed overall sensitivity of 87.9% and specificity of 81.1%, with high sensitivity for NTRK1 (96%) and NTRK2 (100%) fusions and lower sensitivity for NTRK3 fusions (79%). Specificity was 100% for carcinomas of the colon, lung, thyroid, pancreas, and biliary tract. Decreased specificity was seen in breast and salivary gland carcinomas (82% and 52%, respectively), and positive staining was often seen in tumors with neural differentiation. Both sensitivity and specificity were poor in sarcomas. Selection of the appropriate assay for NTRK fusion detection therefore depends on tumor type and genes involved, as well as consideration of other factors such as available material, accessibility of various clinical assays, and whether comprehensive genomic testing is needed concurrently.

12.
J Mol Diagn ; 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31881335

RESUMO

Clinical testing for MLH1 promoter hypermethylation status is important in the workup of patients with MLH1-deficient colorectal and uterine carcinomas when evaluating patients for Lynch syndrome. Current assays use single gene-based methods to assess promoter hypermethylation. Herein, we describe the development and report the performance of a clinical assay for MLH1 promoter hypermethylation using the Infinium methylationEPIC (850k) bead-array platform. Using four cytosine-guanine dinucleotide (CpG) sites within the MLH1 gene promoter, a qualitative MLH1 promoter hypermethylation assay was developed and validated using 63 gastrointestinal and uterine carcinoma samples of known hypermethylation status based on a pyrosequencing reference test. The array-based method achieves clinically robust and reproducible results at an analytical sensitivity level of 8%. Of importance, the 850k array contains probes targeting >850,000 additional CpG sites across the genome, covering sites in most known genes as well as important enhancer regions provided by the Encyclopedia of DNA Elements and Functional Annoation of The Mammalian Genome projects. Thus, the testing modality presented may also be applied to determine the methylation status of other clinically relevant genes or regulatory regions, potentially providing a single laboratory testing workflow for all clinical methylation assays. Furthermore, the concomitant acquisition of genome-wide methylation information provides a workflow that seamlessly enables wider translational epigenetic research.

13.
Mod Pathol ; 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857677

RESUMO

Immunohistochemistry for mismatch repair protein expression is widely used as a surrogate for microsatellite instability status-an important signature for immunotherapy and germline testing. There are no systematic analyses examining the sensitivity of immunohistochemistry for microsatellite instability-high status. Mismatch repair immunohistochemistry and microsatellite instability testing were performed routinely as clinically validated assays. We classified germline/somatic mutation types as truncating (nonsense, frameshift, and in/del) versus missense and predicted pathogenicity of the latter. Discordant cases were compared with concordant groups: microsatellite instability-high/mismatch repair-deficient for mutation comparison and microsatellite stable/mismatch repair-proficient for immunohistochemical comparison. 32 of 443 (7%) microsatellite instability-high cases had immunohistochemistry. Four additional microsatellite instability-high research cases had discordant immunohistochemistry. Of 36 microsatellite instability-high cases with discordant immunohistochemistry, 30 were mismatch repair-proficient, while six (five MLH1 and one MSH2) retained expression of the defective mismatch repair protein and lost its partner. In microsatellite instability-high tumors with discordant immunohistochemistry, we observed an enrichment in deleterious missense mutations over truncating mutations, with 69% (25/36) of cases having pathogenic germline or somatic missense mutations, as opposed to only 19% (7/36) in a matched microsatellite instability-high group with concordant immunohistochemistry (p = 0.0007).  In microsatellite instability-high cases with discordant immunohistochemistry and MLH1 or PMS2 abnormalities, less cells showed expression (p = 0.015 and p = 0.00095, respectively) compared with microsatellite stable/mismatch repair-proficient cases. Tumor mutation burden, MSIsensor score, and truncating mismatch repair gene mutations were similar between microsatellite instability-high cases with concordant versus discordant immunohistochemical expression. Approximately 6% of microsatellite instability-high cases have retained mismatch repair protein expression and would be missed by immunohistochemistry-based testing, hindering patient access to immunotherapy. Another 1% of microsatellite instability-high cases show isolated loss of the defective gene's dimerization partner, which may lead to germline testing of the wrong gene. These cases are enriched for pathogenic mismatch repair missense mutations.

14.
J Thorac Oncol ; 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31887429

RESUMO

INTRODUCTION: Although next-generation sequencing (NGS) has brought insight into critical mutations or pathways (e.g., DNA damage sensing and repair) involved in the etiology of many cancers and has directed new screening, prevention, and therapeutic approaches for patients and families, it has only recently been used in malignant pleural mesotheliomas (MPMs). METHODS: We analyzed the blood samples from patients with MPM using the NGS platform MSK-IMPACT to explore cancer-predisposing genes. The loss-of-function variants or pathogenic entries were identified, and clinicopathologic information was collected. RESULTS: Of 84 patients with MPM, 12% (10 of 84) had pathogenic variants. Clinical characteristics were similar between cohorts, although patients with germline pathogenic variants were more likely to have more than two first-degree family members with cancer than those without germline mutations (40% versus 12%; Fisher's exact test, p < 0.05). Novel, deleterious variants in mesotheliomas included MutS homolog 3 (1% [one of 84]; 95% confidence interval [CI]: 0%-7%), breast cancer gene 1-associated ring domain 1 (1% [one of 84]; 95% CI: 0%-7%), and RecQ-like helicase 4 (2% [two of 84]; 95% CI: 0%-9%). Pathogenic variants previously reported on germline testing in patients with mesotheliomas were breast cancer gene 1-associated protein 1 (4% [three of 84]; 95% CI: 1%-10%), breast cancer gene 2 (1% [one of 84]; 95% CI: 0%-7%), and MRE11 homolog, double strand break repair nuclease (1% [one of 84]; 95% CI: 0%-7%). One patient (1% [one of 84]; 95% CI: 0%-7%) had a likely pathogenic alteration in SHQ1, H/ACA ribonucleoprotein assembly factor that has not been associated with a heritable susceptibility to cancer. CONCLUSIONS: Our study lends further support for the role of aberrations in DNA damage repair genes in the pathogenesis of MPMs and suggests that targeting the members of these pathways for screening and treatment warrants further study.

15.
Nat Med ; 25(12): 1839-1842, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768065

RESUMO

Histiocytoses are clonal hematopoietic disorders frequently driven by mutations mapping to the BRAF and MEK1 and MEK2 kinases. Currently, however, the developmental origins of histiocytoses in patients are not well understood, and clinically meaningful therapeutic targets outside of BRAF and MEK are undefined. In this study, we uncovered activating mutations in CSF1R and rearrangements in RET and ALK that conferred dramatic responses to selective inhibition of RET (selpercatinib) and crizotinib, respectively, in patients with histiocytosis.


Assuntos
Quinase do Linfoma Anaplásico/genética , Histiocitose/genética , Proteínas Proto-Oncogênicas c-ret/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Adolescente , Adulto , Aminopiridinas/farmacologia , Benzotiazóis/farmacologia , Criança , Pré-Escolar , Feminino , Genoma Humano , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Histiocitose/tratamento farmacológico , Histiocitose/patologia , Humanos , Lactente , Masculino , Mutação , Ácidos Picolínicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Piridinas/farmacologia , Pirróis/farmacologia , Receptores Proteína Tirosina Quinases/genética , Gêmeos Monozigóticos , Sequenciamento Completo do Exoma , Adulto Jovem
16.
Nat Med ; 25(12): 1928-1937, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768066

RESUMO

Accurate identification of tumor-derived somatic variants in plasma circulating cell-free DNA (cfDNA) requires understanding of the various biological compartments contributing to the cfDNA pool. We sought to define the technical feasibility of a high-intensity sequencing assay of cfDNA and matched white blood cell DNA covering a large genomic region (508 genes; 2 megabases; >60,000× raw depth) in a prospective study of 124 patients with metastatic cancer, with contemporaneous matched tumor tissue biopsies, and 47 controls without cancer. The assay displayed high sensitivity and specificity, allowing for de novo detection of tumor-derived mutations and inference of tumor mutational burden, microsatellite instability, mutational signatures and sources of somatic mutations identified in cfDNA. The vast majority of cfDNA mutations (81.6% in controls and 53.2% in patients with cancer) had features consistent with clonal hematopoiesis. This cfDNA sequencing approach revealed that clonal hematopoiesis constitutes a pervasive biological phenomenon, emphasizing the importance of matched cfDNA-white blood cell sequencing for accurate variant interpretation.


Assuntos
Ácidos Nucleicos Livres/sangue , DNA Tumoral Circulante/sangue , Genômica , Neoplasias/sangue , Adulto , Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/genética , Análise Mutacional de DNA , DNA de Neoplasias/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Mutação , Neoplasias/genética , Neoplasias/patologia
17.
J Thorac Oncol ; 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31751681

RESUMO

INTRODUCTION: Highly aggressive thoracic neoplasms characterized by SMARCA4 (BRG1) deficiency and undifferentiated round cell or rhabdoid morphology have been recently described and proposed to represent thoracic sarcomas. However, it remains unclear whether such tumors may instead represent sarcomatoid carcinomas, and how their clinicopathologic characteristics compare with those of nonsarcomatoid SMARCA4-deficient non-small cell lung carcinomas (SD-NSCC). METHODS: We identified 22 SMARCA4-deficient thoracic sarcomatoid tumors (SD-TSTs) with round cell and/or rhabdoid morphology and 45 SD-NSCCs, and comprehensively analyzed their clinicopathologic, immunohistochemical, and genomic characteristics using 341-468 gene next-generation sequencing and other molecular platforms. RESULTS: The relationship of SD-TSTs with NSCC was supported by (1) the presence of NSCC components juxtaposed with sarcomatoid areas in five cases, (2) focal expression of NSCC lineage markers TTF1 or p40 in four additional cases, (3) smoking history in all except one patient (mean = 51 pack-years), accompanied by genomic smoking signature, and (4) high tumor mutation burden (mean = 14.2 mutations per megabase) and mutations characteristic of NSCC in a subset. Compared with SD-NSCCs, SD-TSTs exhibited considerably larger primary tumor size (p < 0.0001), worse survival (p = 0.004), and more frequent presentation at younger age (30-50 years) despite heavier smoking history. Distinctive pathologic features of SD-TSTs included consistent lack of adhesion molecule claudin-4, SMARCA2 (BRM) codeficiency, and frequent expression of stem cell markers. CONCLUSIONS: SD-TSTs represent primarily smoking-associated undifferentiated/de-differentiated carcinomas rather than primary thoracic sarcomas. Despite their histogenetic relationship with NSCC, these tumors have unique clinicopathologic characteristics, supporting their recognition as a distinct entity. Further studies are warranted to determine therapeutic approaches to this novel class of exceptionally aggressive thoracic tumors.

18.
JAMA Oncol ; 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31725847

RESUMO

Importance: Diagnosing the site of origin for cancer is a pillar of disease classification that has directed clinical care for more than a century. Even in an era of precision oncologic practice, in which treatment is increasingly informed by the presence or absence of mutant genes responsible for cancer growth and progression, tumor origin remains a critical factor in tumor biologic characteristics and therapeutic sensitivity. Objective: To evaluate whether data derived from routine clinical DNA sequencing of tumors could complement conventional approaches to enable improved diagnostic accuracy. Design, Setting, and Participants: A machine learning approach was developed to predict tumor type from targeted panel DNA sequence data obtained at the point of care, incorporating both discrete molecular alterations and inferred features such as mutational signatures. This algorithm was trained on 7791 tumors representing 22 cancer types selected from a prospectively sequenced cohort of patients with advanced cancer. Results: The correct tumor type was predicted for 5748 of the 7791 patients (73.8%) in the training set as well as 8623 of 11 644 patients (74.1%) in an independent cohort. Predictions were assigned probabilities that reflected empirical accuracy, with 3388 cases (43.5%) representing high-confidence predictions (>95% probability). Informative molecular features and feature categories varied widely by tumor type. Genomic analysis of plasma cell-free DNA yielded accurate predictions in 45 of 60 cases (75.0%), suggesting that this approach may be applied in diverse clinical settings including as an adjunct to cancer screening. Likely tissues of origin were predicted from targeted tumor sequencing in 95 of 141 patients (67.4%) with cancers of unknown primary site. Applying this method prospectively to patients under active care enabled genome-directed reassessment of diagnosis in 2 patients initially presumed to have metastatic breast cancer, leading to the selection of more appropriate treatments, which elicited clinical responses. Conclusions and Relevance: These results suggest that the application of artificial intelligence to predict tissue of origin in oncologic practice can act as a useful complement to conventional histologic review to provide integrated pathologic diagnoses, often with important therapeutic implications.

19.
Hum Pathol ; 94: 23-28, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31669178

RESUMO

Prior cytogenetic profiling of osteosarcomas has suggested that amplifications at the 6p12-21 locus are relatively common alterations in these tumors. However, these studies have been limited by variable testing methodologies used as well as by the relatively small numbers of cases that have been analyzed. To better define the frequency of this alteration, 111 osteosarcomas were profiled using hybridization capture-based next-generation sequencing (NGS) platform (Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets) as part of an institutional clinical cancer genomics initiative. Using this platform, amplification at the 6p12-21 locus was determined by copy number assessment of the VEGFA and CCND3 genes. In addition, fluorescence in situ hybridization was used to assess copy number status for RUNX2, a known transcriptional regulator of osteoblastic differentiation which has previously been reported to be dysregulated in osteosarcomas. 6p12-21 amplification using NGS-based copy number assessment was confirmed in more than a fifth of all cases tested (24 of 111, 21.6%). Most of these cases, when tested using fluorescence in situ hybridization, were found to include RUNX2 within the amplified locus (17 of 18, 94.4%). Whereas many laboratories lack access to large-panel NGS assays, the use of fluorescence in situ hybridization to identify 6p12-21 amplification events by targeting RUNX2 represents a widely available diagnostic modality for the identification of such cases. This could help better define the role of RUNX2 in osteoblastic differentiation and serve as a surrogate for the identification of potentially targetable alterations such as VEGFA amplification at this locus.

20.
Artigo em Inglês | MEDLINE | ID: mdl-31645348

RESUMO

Recurrent somatic missense mutations in histone H3 genes have been identified in subsets of pediatric cancers. H3K36 histone mutations have recently been recognized as oncogenic drivers in rare subsets of malignant soft tissue sarcomas but have not been reported in histiocytic neoplasms. Currently, the histological and molecular spectrum, as well as the clinical behavior of H3K36-mutant soft tissue malignancies, is largely unknown. We describe a pediatric patient with a HIST1H3B K36I-mutant histiocytic tumor arising in the skull. After the failure of upfront therapy for histiocytosis and development of widely disseminated metastatic disease, the patient had an exceptional response to empiric chemotherapy and remains in complete disease remission for more than 5 years. Our report expands the histological spectrum of H3K36M/I-mutant soft tissue malignancies to histiocytic neoplasms and indicates that multiagent sarcoma-like chemotherapy can be highly effective even in the setting of widely disseminated metastatic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA