Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(3): 1448-1454, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31829376

RESUMO

Intercalation has proven to be a powerful strategy for physical and chemical property modulation in two dimensional (2D) van der Waals (vdW) materials. Traditional gaseous and chemical intercalation methods offer the ability for mass production, and the electrochemical method provides reversible fine tuning for in situ material investigation. Spatial control, or even direct patterning, of ions is widely required for practical device fabrication and integration; yet it is not realized. Here we demonstrate a self-driven ion (Co2+, Sn4+, and Cu2+) intercalation approach with patterning ability on vdW α-MoO3. It is proved that the self-driven intercalation was enabled by the formation of a local galvanic cell and could be controlled by the metal electrode potential and the solution concentration. The universality of self-intercalation was confirmed in various types of 2D materials (MoS2, WS2, MoSe2, WSe2 and graphene). Furthermore, the feasibility of building heterostructures by multiple species (Sn & Co) intercalation in a single nanosheet was demonstrated for broadband photodetection. The enhancement of conductivity and photoresponse was found to be due to the synergistic effect of lattice distortion from Sn intercalation and the d orbital from the Co atom. This approach offers a feasible way for direct nano-fabrication in 2D vdW material and functional device integration.

2.
ACS Appl Mater Interfaces ; 11(49): 45979-45990, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31722524

RESUMO

The vertical composition distribution of a bulk heterojunction (BHJ) photoactive layer is known to have dramatic effects on photovoltaic performance in polymer solar cells. However, the vertical composition distribution evolution rules of BHJ films are still elusive. In this contribution, three BHJ film systems, composed of polymer donor PBDB-T, and three different classes of acceptor (fullerene acceptor PCBM, small-molecule acceptor ITIC, and polymer acceptor N2200) are systematically investigated using neutron reflectometry to examine how donor-acceptor interaction and solvent additive impact the vertical composition distribution. Our results show that those three BHJ films possess homogeneous vertical composition distributions across the bulk of the film, while very different composition accumulations near the top and bottom surface were observed, which could be attributed to different repulsion, miscibility, and phase separation between the donor and acceptor components as approved by the measurement of the donor-acceptor Flory-Huggins interaction parameter χ. Moreover, the solvent additive 1,8-diiodooctane (DIO) can induce more distinct vertical composition distribution especially in nonfullerene acceptor-based BHJ films. Thus, higher power conversion efficiencies were achieved in inverted solar cells because of facilitated charge transport in the active layer, improved carrier collection at electrodes, and suppressed charge recombination in BHJ solar cells.

3.
Angew Chem Int Ed Engl ; 58(41): 14740-14747, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31496040

RESUMO

Metal-organic framework-derived NiCo2.5 S4 microrods wrapped in reduced graphene oxide (NCS@RGO) were synthesized for potassium-ion storage. Upon coordination with organic potassium salts, NCS@RGO exhibits an ultrahigh initial reversible specific capacity (602 mAh g-1 at 50 mA g-1 ) and ultralong cycle life (a reversible specific capacity of 495 mAh g-1 at 200 mA g-1 after 1 900 cycles over 314 days). Furthermore, the battery demonstrates a high initial Coulombic efficiency of 78 %, outperforming most sulfides reported previously. Advanced ex situ characterization techniques, including atomic force microscopy, were used for evaluation and the results indicate that the organic potassium salt-containing electrolyte helps to form thin and robust solid electrolyte interphase layers, which reduce the formation of byproducts during the potassiation-depotassiation process and enhance the mechanical stability of electrodes. The excellent conductivity of the RGO in the composites, and the robust interface between the electrodes and electrolytes, imbue the electrode with useful properties; including, ultrafast potassium-ion storage with a reversible specific capacity of 402 mAh g-1 even at 2 A g-1 .

4.
ACS Appl Mater Interfaces ; 11(17): 15581-15590, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30969099

RESUMO

On account of the large radius of K-ions, the electrodes can suffer huge deformation during K-ion insertion and extraction processes. In our work, we unveil the impact of using carboxymethyl cellulose (CMC) instead of poly(vinylidene fluoride) (PVDF) as binders for K-ion storage. Our porous hollow carbon submicrosphere anodes using the CMC binder exhibit a reversible capacity of 208 mA h g-1 after 50 cycles at 50 mA g-1, and even at a high current density of 1 A g-1, they achieve a reversible capacity of 111 mA h g-1 over 3000 cycles with almost no decay, demonstrating remarkably improved reversibility and cycling stability than those using PVDF (18 mA h g-1 after 3000 cycles at 1 A g-1). It is showed that the CMC binder can result in higher adhesion force and better mechanical performance than the PVDF binder, which can restrain the crack during a potassiation/depotassiation process. According to the test of adhesion force, the hollow carbon submicrospheres using the CMC binder show above three times of average adhesion force than that using the PVDF binder. Furthermore, based on the rational design, our hollow carbon submicrospheres also exhibit 62.3% specific capacity contribution below 0.5 V vs K/K+ region, which is helpful to design the full cell with high energy density. We believe that our work will highlight the binder effect to improve the K-ion storage performance.

5.
ACS Appl Mater Interfaces ; 11(17): 15741-15747, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30920195

RESUMO

Defects engineering can broaden the absorption band of wide band gap van der Waals (vdW) materials to the visible or near-IR regime at the expense of material stability and photoresponse speed. Herein, we introduce an atomic intercalation method that brings the wide band gap vdW α-MoO3 for vis-MIR broadband optoelectronic conversion. We confirm experimentally that intercalation significantly enhances photoabsorption and electrical conductivity buts effects negligible change to the lattice structure as compared with ion intercalation. Charge transfer from the Sn atom to the lattices induces an optoelectrical change. As a result, the Sn-intercalated α-MoO3 shows room temperature, air stable, broadband photodetection ability from 405 nm to 10 µm, with photoresponsivity better than 9.0 A W-1 in 405-1500 nm, ∼0.4 A W-1 at 3700 nm, and 0.16 A W-1 at 10 µm, response time of ∼0.1 s, and peak D* of 7.3 × 107 cm Hz0.5 W-1 at 520 nm. We further reveal that photothermal effect dominates in our detection range by real-time photothermal-electrical measurement, and the materials show a high temperature coefficient of resistance value of -1.658% K-1 at 300 K. These results provide feasible route for designing broadband absorption materials for photoelectrical, photothermal, or thermal-electrical application.

6.
Sci Total Environ ; 642: 1184-1200, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30045500

RESUMO

Sediment in a water column provides excellent substratum for microorganism colonization, and biological processes would alter the physical and chemical of sediment, resulting in substantial changes in sediment dynamics. The flocculation of sediment with biological processes are defined as sediment bioflocculation, which has been ubiquitously observed across aquatic ecosystems, activated sludge plants and bioflocculant applications, as a result of various processes involving particle aggregation and breakage under the complex effects of microorganisms and their metabolic products (e.g., extracellular polymeric substances EPS). EPS are complex high-molecular-weight mixtures of polymers, which are the primary components that hold microbial aggregates together by acting as a biological glue. Several mechanistic aggregation theories such as the alginate theory, adsorption bridging theory, divalent cation bridging theory, and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and a number of influencing factors (e.g., sediment properties, microbial activity, EPS quantities and components, and external environment conditions) have been proposed to elucidate the role of microorganisms and EPS in sediment aggregation, promoting the investigation of the sediment bioflocculation evolution and kinetics models. However, due to the complex interrelationships of multiple physical, chemical, and biological processes and the incomprehensive knowledge of microorganisms and EPS, considerable research should be further conducted to fully understand their precise roles in the sediment bioflocculation process. In this study, a review of dynamic characterizations, mechanism, influencing factors and models of sediment bioflocculation are given to obtain a more comprehensive understanding of sediment bioflocculation dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA