Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Onco Targets Ther ; 12: 9827-9848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819482


Introduction: MIR22HG has a reported involvement in the tumorigenesis of a variety of cancers, including hepatocellular carcinoma (HCC). However, the exact molecular mechanism of MIR22HG in HCC has not been clarified. Methods: In the present study, we integrated data from in-house RT-qPCR, RNA-sequencing, microarray, and literature studies to conduct a comprehensive evaluation of the clinico-pathological and prognostic significance of MIR22HG in an extremely large group of HCC samples. We also explored the potential mechanism of MIR22HG in HCC by analyzing the alteration profiles of MIR22HG in HCC to predict transcription factors (TFs) that may interact with MIR22HG and to annotate the biological functions of genes co-expressed with MIR22HG. MIR22HG expression was also compared in HCC nude mice xenografts before and after a treatment with nitidine chloride. Results: We found that MIR22HG was downregulated in HCC and that this downregulation correlated with the malignant phenotype of HCC. Comprehensive analysis of the prognostic impact of MIR22HG in HCC revealed a beneficial effect of MIR22HG on the survival outcome of HCC patients. Seven cases of MIR22HG deep deletion occurred in 360 of the cancer genome atlas (TCGA) provisional HCC samples. A total of 22 MIR22HG-TF-mRNA triplets in HCC were predicted by the lncRNAmap. Co-expressed genes of MIR22HG, identified by weighted correlation network analysis (WGCNA), mainly participated in the pathways involving osteoclast differentiation, chemokine signaling pathways, and hematopoietic cell lineage. In vivo experiments demonstrated that nitidine chloride could stimulate MIR22HG expression in HCC xenografts. Conclusion: In summary, MIR22HG may play a tumor-suppressive role in HCC by coordinating with predicted TFs and co-expressed genes, such as NLRP3, CSF1R, SIGLEC10, and ZEB2, or by being controlled by nitidine chloride.

Cell Death Dis ; 10(9): 658, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506425


Nitidine chloride (NC) has been demonstrated to have an anticancer effect in hepatocellular carcinoma (HCC). However, the mechanism of action of NC against HCC remains largely unclear. In this study, three pairs of NC-treated and NC-untreated HCC xenograft tumour tissues were collected for circRNA sequencing analysis. In total, 297 circRNAs were differently expressed between the two groups, with 188 upregulated and 109 downregulated, among which hsa_circ_0088364 and hsa_circ_0090049 were validated by real-time quantitative polymerase chain reaction. The in vitro experiments showed that the two circRNAs inhibited the malignant biological behaviour of HCC, suggesting that they may play important roles in the development of HCC. To elucidate whether the two circRNAs function as "miRNA sponges" in HCC, we identified circRNA-miRNA and miRNA-mRNA interactions by using the CircInteractome and miRwalk, respectively. Subsequently, 857 miRNA-associated differently expressed genes in HCC were selected for weighted gene co-expression network analysis. Module Eigengene turquoise with 423 genes was found to be significantly related to the survival time, pathology grade and TNM stage of HCC patients. Gene functional enrichment analysis showed that the 423 genes mainly functioned in DNA replication- and cell cycle-related biological processes and signalling cascades. Eighteen hubgenes (SMARCD1, CBX1, HCFC1, RBM12B, RCC2, NUP205, ECT2, PRIM2, RBM28, COPS7B, PRRC2A, GPR107, ANKRD52, TUBA1B, ATXN7L3, FUS, MCM8 and RACGAP1) associated with clinical outcomes of HCC patients were then identified. These findings showed that the crosstalk between hsa_circ_0088364 and hsa_circ_0090049 and their competing mRNAs may play important roles in HCC, providing interesting clues into the potential of circRNAs as therapeutic targets of NC in HCC.

Chin J Integr Med ; 20(1): 63-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22370871


Malignant cancer is the leading cause of death in man, exceeding cerebrovascular disease and heart disease. More than half of the total mortality due to malignant cancer is from lung, liver, intestinal and gastric cancer. Chemotherapy is one of the effective treatments for cancer. However, the great majority of Western anticancer medicines have considerable side effects. Herbal medicines offer many more advantages than synthesized compounds because they are made from purely natural compounds and have less adverse effects. However, the single administration methods used as standard in herbal medicine, and deficient drug targeting, severely limit their anticancer activity. Single-walled carbon nanotubes (SWNTs) can be used as drug carriers. They have been modified to form Chinese anticancer medicine-SWNT compounds which can specifically target tumors, thereby significantly increasing the therapeutic effectiveness of these medicines. Water-soluble SWNTs have high stability. As a drug carrier, SWNTs functional modification of the anticancer medicine may improve the targeting and killing of tumor cells. SWNTs have been attached to the Chinese antitumor medicines paclitaxel and plumbagin and have achieved excellent therapeutic effects. Furthermore, choosing the best administration methods such as internal iliac arterial infusion, intravesical infusion and embedment of a hypodermic chemotherapeutic pump, may also improve the anticancer effects of Chinese medicine.

Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Medicamentos de Ervas Chinesas/uso terapêutico , Nanotubos de Carbono/química , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Portadores de Fármacos , Estudos de Viabilidade , Humanos , Neoplasias/patologia