Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 279: 121227, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34736151

RESUMO

Bacterial keratitis (BK) is one of the most commonly leading causes of visual impairment and blindness worldwide, and suffers the risk of drug-resistant infections due to the abuse of antibiotics. Herein, we report a cationic diphenyl luminogen with aggregation-induced emission called IQ-Cm containing isoquinolinium and coumarin units for theranostic study of BK. IQ-Cm has no obvious cytotoxicity to mammalian cells below a certain concentration, and could preferentially bind to bacteria over mammalian cells. IQ-Cm can be used as a sensitive self-reporting probe to rapidly discriminate live and dead bacteria by the visual emission colors. The intrinsic dark toxicity to bacteria and generation of reactive oxygen species under light irradiation endow IQ-Cm with excellent antibacterial activity in vitro and in BK rabbit models infected with S. aureus. The present study provides a sensitive and efficient theranostic strategy for rapid discrimination of various bacterial states and the combined treatment of BK based on the intrinsic dark antibacterial activity and photodynamic therapy effect.

2.
Mater Horiz ; 8(5): 1433-1438, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846450

RESUMO

Photosynthesis is regarded as the foundation for sustaining life on our planet. Light-harvesting is the initial step that activates the subsequent photochemical reactions. In the photosystems, chloroplast is the basic light-driven metabolic factory of higher plant cells. However, there is an incomplete match between the solar radiation spectrum and absorption profile of chloroplasts. It is hard for the photosynthetic pigments to fully utilize the sunlight energy. Here, we designed two new aggregation-induced emission (AIE) molecules with activated alkyl groups (TPE-PPO and TPA-TPO). Via a facile metal-free "Click" reaction, we realized the substantial manipulation of live chloroplasts with the AIE luminogens (AIEgens). Owing to the matched photophysical properties, the AIEgens could harvest harmful ultraviolet radiation (HUVR) and photosynthetically inefficient radiation (PIR), and further convert them into photosynthetically active radiation (PAR) for chloroplast absorption. As a result, the conjugated AIEgen-chloroplast exhibited better capability of water splitting and electron separation. It promoted the generation of adenosine triphosphate (ATP), which is an important product of photosynthesis. This work provides an effective strategy for improving plant photosynthesis.

3.
Mater Horiz ; 8(6): 1816-1824, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846510

RESUMO

The lack of rapid and reliable microbial detection and sensing platforms and insufficient understanding of microbial behavior may delay precautions that could be made, which is a great threat to human life and increases the heavy financial burden on society. In this contribution, a dual-aggregation-induced emission luminogen (AIEgen) system is successfully developed for microbial imaging and metabolic status sensing. This system consists of two AIEgens (DCQA and TPE-2BA) that bear positively charged groups or boronic acid groups, providing universal microbial staining ability and specific affinity for dead microbes, respectively. Based on the distinctive fluorescence response produced by the diverse interaction of AIEgens with live or dead microbes, this dual-AIEgen system can detect all the microbes and identify their viabilities. Furthermore, the morphology and metabolic status of a sessile biofilm can also be imaged and monitored. The system exhibits rapid labelling properties that suitable for various microbes, and good biocompatibilities.

4.
Mater Horiz ; 8(2): 630-638, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821280

RESUMO

Mechanochromic (MC) luminogens in response to external stimulus have shown promising applications as pressure sensors and memory devices. Meanwhile, research on their underlying mechanism is still in the initial stage. Here, three pyridinium-functionalized tetraphenylethylenes bearing n-pentyloxy, hydrogen and nitro groups, namely TPE-OP, TPE-H and TPE-NO, are designed to systematically investigate the influence of the push-pull electronic effect and molecular conformation on MC luminescence. Upon anisotropic grinding and isotropic hydrostatic compression, TPE-OP with strong intramolecular charge transfer (ICT) affords the best MC behavior among them. Analysis of three polymorphs of TPE-H clearly indicates that planarization of the molecular conformation plays an important role in their bathochromic shifts under mechanical stimuli. Theoretical calculations also verify that high twisting stress of AIEgens can be released under high pressure. This study presents a mechanistic insight into MC behaviour and an effective strategy to achieve high-contrast MC luminescence.

5.
ChemMedChem ; 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837664

RESUMO

Efficient theranostic systems can realize better outcomes in disease treatment because of precise diagnosis and the concomitant effective therapy. Aggregation-induced emission luminogens (AIEgens) are a unique type of organic emitters with intriguing photophysical properties in the aggregate state. Among the AIEgens studied for biomedical applications, so far, metal-based AIE systems have shown great potential in theranostics due to the enhanced multimodal bioimaging ability and therapeutic effect. This research field has been growing rapidly, and many rationally designed systems with promising activities to cancer and other diseases have been reported recently. In this review, we summarized the recent progress of metal-based AIE materials in bioimaging and biological theranostics, and deciphered the pertinent design strategies. We hope that this review can offer new insights into the development of this growing field.

6.
Adv Mater ; 33(48): e2105113, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34605067

RESUMO

Microscopic control of macroscopic phenomena is one of the core subjects in materials science. Particularly, the spatio-temporal control of material behaviors through a non-contact way is of fundamental importance but is difficult to accomplish. Herein, a strategy to realize remote spatio-temporal control of luminescence behaviors is reported. A multi-arm salicylaldehyde benzoylhydrazone-based aggregation-induced emission luminogen (AIEgen)/metal-ion system, of which the fluorescence can be gated by the UV irradiation with time dependency, is developed. By changing the metal-ion species, the fluorescence emission and the intensity can also be tuned. The mechanism of the UV-mediated fluorescence change is investigated, and it is revealed that a phototriggered aggregation-induced emission (PTAIE) process contributes to the behaviors. The AIEgen is further covalently integrated into a polymeric network and the formed gel/metal-ion system can achieve laser-mediated mask-free writing enabled by the PTAIE process. Moreover, by further taking advantage of the time-dependent self-healing property of hydrazone-based dynamic covalent bond, transformable 4D soft patterns are generated. The findings and the strategy increase the ways to manipulate molecules on the supramolecule or aggregate level. They also show opportunities for the development of controllable smart materials and expand the scope of the materials in advanced optoelectronic applications.

7.
Natl Sci Rev ; 8(6): nwaa260, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34691663

RESUMO

Restriction of intramolecular motion (RIM) is the widely-accpeted mechanism of aggregation-induced emission (AIE). In this concise and comprehensive perspective, four mechanistic models related to different nonradiative pathways are summarized with examples to disclose the connotation of RIM, and meaningful mechanistic topics for future researches are advised.

8.
Macromol Rapid Commun ; : e2100524, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653283

RESUMO

Stemming from unique ring structures, heterocyclic polymers exhibit distinguished electrical, mechanical, and photophysical properties and have been widely used in a variety of important applications. Along with the technological significance are the challenges in their synthesis. Traditional synthetic strategies toward heterocyclic polymers often require the direct attachment of heterocycles to polymer backbones, which are generally limited by the lack of suitable and low-cost heterocyclic monomers, tedious reaction process, difficulties in incorporation of multiple substitutents, etc. Alternatively, in situ construction of heterocyclic polymers via triple-bond based polymerization offers promising prospects. This review summarized the recent progress on polymerizations of triple-bond based monomers including alkynes, nitriles, and isonitriles that can in situ generate heterocyclic polymers. The properties and advanced applications of the derived heterocyclic polymers will also be discussed. Finally, the future perspectives and challenges in this field will be addressed.

9.
JACS Au ; 1(3): 344-353, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34467298

RESUMO

Photoresponsive polymers have attracted extensive attention due to their tunable functionalities and advanced applications; thus, it is significant to develop facile in situ synthesis strategies, extend polymers family, and establish various applications for photoresponsive polymers. Herein, we develop a catalyst-free spontaneous polymerization of dihaloalkynes and disulfonic acids without photosensitive monomers for the in situ synthesis of photoresponsive polysulfonates at room temperature in air with 100% atom economy in high yields. The resulting polysulfonates could undergo visible photodegradation with strong photoacid generation, leading to various applications including dual-emissive or 3D photopatterning, and practical broad-spectrum antibacterial activity. The halogen-rich polysulfonates also exhibit a high and photoswitched refractive index and could undergo efficient postfunctionalizations to further expand the variety and functionality of photoresponsive heteroatom-containing polyesters.

10.
Nanoscale ; 13(32): 13610-13616, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477635

RESUMO

Biofilm-related infections, such as dental plaque, chronic sinusitis, native valve endocarditis, and chronic airway infections in cystic fibrosis have brought serious suffering to patients and financial burden to society. Materials that can eliminate mature biofilms without developing drug resistance are promising tools to treat biofilm-related infections, and thus they are in urgent demand. Herein, we designed and readily prepared organic nanoparticles (NPs) with highly efficient photothermal conversion by harvesting energy via excited-state intramolecular motions and enlarging molar absorptivity. The photothermal NPs can sufficiently eliminate mature bacterial biofilms upon low-power near-infrared laser irradiation. NPs hold great promise for the rapid eradication of bacterial biofilms by photothermal therapy.


Assuntos
Antibacterianos , Nanopartículas , Antibacterianos/farmacologia , Biofilmes , Humanos , Terapia Fototérmica
11.
Adv Healthc Mater ; : e2101055, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34418306

RESUMO

The emergence of the concept of aggregation-induced emission (AIE) has opened new opportunities in many research areas, such as biopsy analysis, biological processes monitoring, and elucidation of key physiological and pathological behaviors. As a new class of luminescent materials, AIE luminogens (AIEgens) possess many prominent advantages such as tunable molecular structures, high molar absorptivity, high brightness, large Stokes shift, excellent photostability, and good biocompatibility. The past two decades have witnessed a dramatic growth of research interest in AIE, and many AIE-based bioprobes with excellent performance have been widely explored in biomedical fields. This review summarizes some of the latest advancements of AIE molecular probes and AIE nanoparticles (NPs) with regards to biomedical and healthcare applications. According to the research areas, the review is divided into five sections, which are imaging and identification of cells and bacteria, photodynamic therapy, multimodal theranostics, deep tissue imaging, and fluorescence-guided surgery. The challenges and future opportunities of AIE materials in the advanced biomedical fields are briefly discussed. In perspective, the AIE-based bioprobes play vital roles in the exploration of advanced bioapplications for the ultimate goal of addressing more healthcare issues by integrating various cutting-edge modalities and techniques.

12.
Adv Mater ; 33(39): e2101500, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34350646

RESUMO

Biomimetic exploration of stimuli-responsive and crack-resistant hydrogels is of great academic and practical significance, although the rational design of tough hydrogels is limited by insufficient mechanism study due to the lack of imaging techniques to "see" hydrogels at mesoscale level. A series of composite hydrogels with compartmentalized thermal response is designed by incorporating aggregation- and polarity-sensitive fluorescent probes in a poly(N-isopropylacrylamide) (PNIPAM) network grafted with poly(N,N-dimethylacrylamide) side-chains. The fluorescence technique is explored as a powerful tool to directly visualize their hydrophilicity-hydrophobicity transformation and the composition-dependent microphase separation. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, the thermoresponsive toughening is attributed to the formation of multiple noncovalent interactions and the conformational changes of PNIPAM chains. The enhanced fracture energy by crack multifurcation is related to the tearing-like disruption of weak interfaces between the separated phases.

13.
J Am Chem Soc ; 143(30): 11820-11827, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34292706

RESUMO

Molecular motions are essential natures of matter and play important roles in their structures and properties. However, owing to the diversity and complexity of structures and behaviors, the study of motion-structure-property relationships remains a challenge, especially at all levels of structural hierarchy from molecules to macro-objects. Herein, luminogens showing aggregation-induced emission (AIE), namely, 9-(pyrimidin-2-yl)-carbazole (PyCz) and 9-(5-R-pyrimidin-2-yl)-carbazole [R = Cl (ClPyCz), Br (BrPyCz), and CN (CyPyCz)], were designed and synthesized, to decipher the dependence of materials' structures and properties on molecular motions at the molecule and aggregate levels. Experimental and theoretical analysis demonstrated that the active intramolecular motions in the excited state of all molecules at the single-molecule level endowed them with more twisted structural conformations and weak emission. However, owing to the restriction of intramolecular motions in the nano/macroaggregate state, all the molecules assumed less twisted conformations with bright emission. Unexpectedly, intermolecular motions could be activated in the macrocrystals of ClPyCz, BrPyCz, and CyPyCz through the introduction of external perturbations, and synergic strong and weak intermolecular interactions allowed their crystals to undergo reversible deformation, which effectively solved the problem of the brittleness of organic crystals, while endowing them with excellent elastic performance. Thus, the present study provided insights on the motion-structure-property relationship at each level of structural hierarchy and offered a paradigm to rationally design multifunctional AIE-based materials.

14.
Adv Mater ; 33(36): e2102258, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34309084

RESUMO

Solar-driven interfacial steam generation (SISG) has been recognized as a promising strategy to solve water shortages in an eco-friendly and low-cost way. However, the practical application of SISG is vitally restricted by some inherent limits, especially for finite evaporation rate and insufficient working life of evaporator. Herein, a novel SISG system involving an all-fiber porous cylinder-like foam 3D evaporator, side area-assisted evaporation protocol, and aggregation-induced-emission-active solar absorber with "one stone two birds" function is explored. The solar absorber exhibits efficient photothermal conversion, endowing the side area-assisted evaporator with as high as 3.6 kg m-2 h-1 of solar evaporation rate, which is highly desirable for SISG under 1 sun of irradiation. Moreover, the solar absorber is capable of powerfully producing reactive oxygen species upon sunlight irradiation, which results in extraordinary photodynamic killing of bacteria nearby the fiber to prevent biofouling, consequently improving the working life of evaporator.

15.
Annu Rev Anal Chem (Palo Alto Calif) ; 14(1): 413-435, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314222

RESUMO

Physiological dynamics in living cells and tissues are crucial for maintenance and regulation of their normal activities and functionalities. Tiny fluctuations in physiological microenvironments can leverage significant influences on cell growth, metabolism, differentiation, and apoptosis as well as disease evolution. Fluorescence imaging based on aggregation-induced emission luminogens (AIEgens) exhibits superior advantages in real-time sensing and monitoring of the physiological dynamics in living systems, including its unique properties such as high sensitivity and rapid response, flexible molecular design, and versatile nano- to mesostructural fabrication. The introduction of canonic AIEgens with long-wavelength, near-infrared, or microwave emission, persistent luminescence, and diversified excitation source (e.g., chemo- or bioluminescence) offers researchers a tool to evaluate the resulting molecules with excellent performance in response to subtle fluctuations in bioactivities with broader dimensionalities and deeper hierarchies.


Assuntos
Corantes Fluorescentes , Luminescência
16.
Adv Mater ; 33(32): e2008071, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34137087

RESUMO

The unique advantages and the exciting application prospects of AIEgens have triggered booming developments in this area in recent years. Among them, stimuli-responsive AIEgens have received particular attention and impressive progress, and they have been demonstrated to show tremendous potential in many fields from physical chemistry to materials science and to biology and medicine. Here, the recent achievements of stimuli-responsive AIEgens in terms of seven most representative types of stimuli including force, light, polarity, temperature, electricity, ion, and pH, are summarized. Based on typical examples, it is illustrated how each type of systems realize the desired stimuli-responsive performance for various applications. The key work principles behind them are ultimately deciphered and figured out to offer new insights and guidelines for the design and engineering of the next-generation stimuli-responsive luminescent materials for more broad applications.

17.
ACS Nano ; 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181408

RESUMO

The development of effective antifungal agents remains a big challenge in view of the close evolutionary relationship between mammalian cells and fungi. Moreover, rapid mutations of fungal receptors at the molecular level result in the emergence of drug resistance. Here, with low tendency to develop drug-resistance, the subcellular organelle mitochondrion is exploited as an alternative target for efficient fungal killing by photodynamic therapy (PDT) of mitochondrial-targeting luminogens with aggregation-induced emission characteristics (AIEgens). With cationic isoquinolinium (IQ) moiety and proper hydrophobicity, three AIEgens, namely, IQ-TPE-2O, IQ-Cm, and IQ-TPA, can preferentially accumulate at the mitochondria of fungi over the mammalian cells. Upon white light irradiation, these AIEgens efficiently generate reactive 1O2, which causes irreversible damage to fungal mitochondria and further triggers the fungal death. Among them, IQ-TPA shows the highest PDT efficiency against fungi and negligible toxicity to mammalian cells, achieving the selective and highly efficient killing of fungi. Furthermore, we tested the clinical utility of this PDT strategy by treating fungal keratitis on a fungus-infected rabbit model. It was demonstrated that IQ-TPA presents obviously better therapeutic effects as compared with the clinically used rose bengal, suggesting the success of this PDT strategy and its great potential for clinical treatment of fungal infections.

18.
J Am Chem Soc ; 143(25): 9565-9574, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34115474

RESUMO

Apart from the traditional through-bond conjugation (TBC), through-space conjugation (TSC) is gradually proved as another important interaction in photophysical processes, especially for the recent observation of clusteroluminescence from nonconjugated molecules. However, unlike TBC in conjugated chromophores, it is still challenging to manipulate TSC and clusteroluminescence. Herein, simple and nonconjugated triphenylmethane (TPM) and its derivatives with electron-donating and electron-withdrawing groups were synthesized, and their photophysical properties were systematically studied. TPM was characterized with visible clusteroluminescence due to the intramolecular TSC. Experimental and theoretical results showed that the introduction of electron-donating groups into TPM could red-shift the wavelength and increase the efficiency of clusteroluminescence simultaneously, due to the increased electronic density and stabilization of TSC. However, TPM derivatives with electron-withdrawing groups showed inefficient or even quenched clusteroluminescence caused by the vigorous excited-state intramolecular motion and intermolecular photoinduced electron transfer process. This work provides a reliable strategy to manipulate TSC and clusteroluminescence.

19.
J Am Chem Soc ; 143(25): 9468-9477, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34152134

RESUMO

Solid-state molecular motions (SSMM) play a critical role in adjusting behaviors and properties of materials. However, research on SSMM, especially for multicomponent systems, suffers from various problems and is rarely explored. Herein, through collaboration with cocrystal engineering, visualization and manipulation of SSMM in two-component systems, namely, FSBO ((E)-2-(4-fluorostyryl)benzo[d]oxazole)/TCB (1,2,4,5-tetracyanobenzene) and PVBO ((E)-2-(2-(pyridin-4-yl)vinyl)benzo[d]oxazole)/TCB, were realized. The obtained yellow-emissive F/T (FSBO/TCB) cocrystal displayed turn-on fluorescence, and the green-emissive P/T (PVBO/TCB) cocrystal presented redder emission, both of which exhibited an aggregation-induced emission property. At varied pressure and temperature, the grinding mixtures of FSBO/TCB and PVBO/TCB displayed different molecular motions that were readily observed through the fluorescence signal. Notably, even without grinding, FSBO and TCB molecules could move over for 4 mm in a 1D tube. The unique emission changes induced by SSMM were applied in information storage and dynamic anticounterfeiting. This work not only visualized and manipulated SSMM but offered more insights for multicomponent study in aggregate science.

20.
ACS Nano ; 15(5): 9176-9185, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33939413

RESUMO

Gold complexes have been recognized as potential anticancer agents against various kinds of diseases due to their inherent suppressions of antioxidant thioredoxin reductase (TrxR) activity. Herein, a powerful aggregation-induced emission luminogen (AIEgen), TBP-Au, was designed and synthesized by integrating an anticancer Au(I) moiety with an AIE-active photosensitizer (TBP), in which both the production and consumption routes of reactive oxygen species (ROS) were elaborately considered simultaneously to boost the anticancer efficacy. It has been demonstrated that TBP-Au could realize superior two-photon fluorescence imaging in tumor tissues with high resolution and deep penetration as well as long-term imaging in live animals due to its AIE property. In addition, the introduction of a special Au(I) moiety could tune the organelle specificity and efficiently facilitate the ROS-determined photodynamic therapy (PDT). More impressively, TBP-Au could efficiently eliminate cancer cells under light irradiation through the preconceived synergetic approaches from the PDT and the effective suppression of TrxR, demonstrating that TBP-Au holds great potential for precise cancer theranostics.


Assuntos
Ouro , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Animais , Antioxidantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...