Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 168: 112369, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33932840

RESUMO

Determining the effects of microplastic (MP) ingestion by marine organisms, especially during the sensitive larval stages, is an important step in understanding wider ecosystem responses. We investigated the ingestion, retention (1-5 µm), and short-term exposure effects (1-4 µm) of spherical MPs by larvae of the sea urchin Pseudechinus huttoni. Larvae ingested MPs in a dose-dependent manner and successfully egested particles after a short retention period. Survival was not significantly affected by exposure to MPs over the 10-day experimental period, however, a teratogenic response in terms of delayed development resulted in an increase of larval arm asymmetry. Additionally, MP exposure resulted in oxidative damage to lipids and proteins in larval body tissue despite a significant upregulation of antioxidant defences. The findings indicate MP exposure may impair cellular function, leading to negative consequences for an organism's fitness and survival.

2.
Mar Environ Res ; 167: 105291, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33691257

RESUMO

Ocean acidification (OA) can negatively affect early-life stages of marine organisms, with the key processes of larval settlement and metamorphosis potentially vulnerable to reduced seawater pH. Settlement success depends strongly on suitable substrates and environmental cues, with marine biofilms as key settlement inducers for a range of marine invertebrate larvae. This study experimentally investigated (1) how seawater pH determines growth and community composition of marine biofilms, and (2) whether marine biofilms developed under different pH conditions can alter settlement success in the New Zealand serpulid polychaete Galeolaria hystrix. Biofilms were developed under six pH(T) treatments (spanning from 7.0 to 8.1 [ambient]) in a flow-through system for up to 14 months. Biofilms of different ages (7, 10 and 14 months) were used to assay successful settlement of competent G. hystrix larvae reared under ambient conditions. Biofilm microbiomes were characterized through amplicon sequencing of the small subunit ribosomal rRNA gene (16S and 18S). Biofilm community composition was stable over time within each pH treatment and biofilm age did not affect larval settlement selectivity. Seawater pH treatment strongly influenced biofilm community composition, as well as subsequent settlement success when biofilms were presented to competent Galeolaria larvae. Exposure to biofilms incubated under OA-treatments caused a decrease in larval settlement of up to 40% compared to the ambient treatments. We observed a decrease in settlement on biofilms relative to ambient pH for slides incubated at pH 7.9 and 7.7. This trend was reversed at pH 7.4, resulting in high settlement, comparable to ambient biofilms. Settlement decreased on biofilms from pH 7.2, and no settlement was observed on biofilms from pH 7.0. For the first time, we show that long-term incubation of marine biofilms under a wide range of reduced seawater pH treatments can alter marine biofilms in such a way that settlement success in marine invertebrates can be compromised.

3.
Proc Natl Acad Sci U S A ; 117(36): 22281-22292, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32843340

RESUMO

Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth-ocean-atmosphere dynamic exchange of elements. The ratios' dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios' variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.

4.
Mar Environ Res ; 159: 104977, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32662430

RESUMO

Extensive research has shown that the early life stages of marine organisms are sensitive to ocean acidification (OA). Less is known, however, on whether larval settlement and metamorphosis may be affected, or by which mechanisms. These are key processes in the life cycle of most marine benthic organisms, since they mark the transition between the free swimming larval stage to benthic life. We investigated whether OA could affect the larval settlement success of the sea urchin Evechinus chloroticus, a key coastal species with ecological, economic and cultural importance in New Zealand. We performed four settlement experiments to test whether reduced seawater pH (ranging from 8.1 to 7.0, at an interval of ~0.2 pH units) alters larval settlement and metamorphosis success. Our results show that settlement success was not significantly reduced when the larvae were exposed to a range of reduced seawater pH treatments (8.1-7.0) at time of settlement (on direct effects). Similarly, when presented with crustose coralline algae (CCA) pre-conditioned in seawater pH of either pH 8.1 or 7.7 for 28 days, larval settlement success remained unaltered (on indirect effects). We conclude that competent larvae in this species are resilient to OA at time of settlement. Further research on a range of taxa that vary in settlement selectivity and behaviour is needed in order to fully understand the effects of OA on the life cycle of marine invertebrates and the consequences it might have for future coastal marine ecosystems.


Assuntos
Ecossistema , Ouriços-do-Mar , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Larva , Metamorfose Biológica
5.
Sci Rep ; 10(1): 3274, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094391

RESUMO

Increased atmospheric CO2 is driving ocean acidification (OA), and potential changes in marine ecosystems. Research shows that both planktonic and benthic communities are affected, but how these changes are linked remains unresolved. Here we show experimentally that decreasing seawater pH (from pH 8.1 to 7.8 and 7.4) leads to reduced biofilm formation and lower primary producer biomass within biofilms. These changes occurred concurrently with a re-arrangement of the biofilm microbial communities. Changes suggest a potential shift from autotrophic to heterotrophic dominated biofilms in response to reduced pH. In a complimentary experiment, biofilms reared under reduced pH resulted in altered larval settlement for a model species (Galeolaria hystrix). These findings show that there is a potential cascade of impacts arising from OA effects on biofilms that may drive important community shifts through altered settlement patterns of benthic species.

6.
Ecol Evol ; 9(17): 10004-10016, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534709

RESUMO

Ocean acidification (OA) can be detrimental to calcifying marine organisms, with stunting of invertebrate larval development one of the most consistent responses. Effects are usually measured by short-term, within-generation exposure, an approach that does not consider the potential for adaptation. We examined the genetic response to OA of larvae of the tropical sea urchin Echinometra sp. C. raised on coral reefs that were either influenced by CO2 vents (pH ~ 7.9, future OA condition) or nonvent control reefs (pH 8.2). We assembled a high quality de novo transcriptome of Echinometra embryos (8 hr) and pluteus larvae (48 hr) and identified 68,056 SNPs. We tested for outlier SNPs and functional enrichment in embryos and larvae raised from adults from the control or vent sites. Generally, highest F ST values in embryos were observed between sites (intrinsic adaptation, most representative of the gene pool in the spawned populations). This comparison also had the highest number of outlier loci (40). In the other comparisons, classical adaptation (comparing larvae with adults from the control transplanted to either the control or vent conditions) and reverse adaptation (larvae from the vent site returned to the vent or explanted at the control), we only observed modest numbers of outlier SNPs (6-19) and only enrichment in two functional pathways. Most of the outliers detected were silent substitutions without adaptive potential. We conclude that there is little evidence of realized adaptation potential during early development, while some potential (albeit relatively low) exists in the intrinsic gene pool after more than one generation of exposure.

7.
Genes (Basel) ; 10(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832286

RESUMO

Population genetic data underpin many studies of behavioral, ecological, and evolutionary processes in wild populations and contribute to effective conservation management. However, collecting genetic samples can be challenging when working with endangered, invasive, or cryptic species. Environmental DNA (eDNA) offers a way to sample genetic material non-invasively without requiring visual observation. While eDNA has been trialed extensively as a biodiversity and biosecurity monitoring tool with a strong taxonomic focus, it has yet to be fully explored as a means for obtaining population genetic information. Here, we review current research that employs eDNA approaches for the study of populations. We outline challenges facing eDNA-based population genetic methodologies, and suggest avenues of research for future developments. We advocate that with further optimizations, this emergent field holds great potential as part of the population genetics toolkit.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/análise , Biodiversidade , Espécies em Perigo de Extinção , Monitoramento Ambiental , Genética Populacional , Espécies Introduzidas
8.
Ecol Evol ; 9(3): 1323-1335, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805162

RESUMO

DNA extraction from environmental samples (environmental DNA; eDNA) for metabarcoding-based biodiversity studies is gaining popularity as a noninvasive, time-efficient, and cost-effective monitoring tool. The potential benefits are promising for marine conservation, as the marine biome is frequently under-surveyed due to its inaccessibility and the consequent high costs involved. With increasing numbers of eDNA-related publications have come a wide array of capture and extraction methods. Without visual species confirmation, inconsistent use of laboratory protocols hinders comparability between studies because the efficiency of target DNA isolation may vary. We determined an optimal protocol (capture and extraction) for marine eDNA research based on total DNA yield measurements by comparing commonly employed methods of seawater filtering and DNA isolation. We compared metabarcoding results of both targeted (small taxonomic group with species-level assignment) and universal (broad taxonomic group with genus/family-level assignment) approaches obtained from replicates treated with the optimal and a low-performance capture and extraction protocol to determine the impact of protocol choice and DNA yield on biodiversity detection. Filtration through cellulose-nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit outperformed other combinations of capture and extraction methods, showing a ninefold improvement in DNA yield over the poorest performing methods. Use of optimized protocols resulted in a significant increase in OTU and species richness for targeted metabarcoding assays. However, changing protocols made little difference to the OTU and taxon richness obtained using universal metabarcoding assays. Our results demonstrate an increased risk of false-negative species detection for targeted eDNA approaches when protocols with poor DNA isolation efficacy are employed. Appropriate optimization is therefore essential for eDNA monitoring to remain a powerful, efficient, and relatively cheap method for biodiversity assessments. For seawater, we advocate filtration through cellulose-nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit or phenol-chloroform-isoamyl for successful implementation of eDNA multi-marker metabarcoding surveys.

9.
Mol Ecol Resour ; 19(2): 426-438, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30576077

RESUMO

While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false-positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along-shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat-specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.


Assuntos
Organismos Aquáticos/classificação , Biota , Código de Barras de DNA Taxonômico , Ecossistema , Eucariotos/classificação , Metagenômica , Movimentos da Água , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Análise por Conglomerados , DNA Ribossômico/química , DNA Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Eucariotos/genética , Eucariotos/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Biol Bull ; 232(3): 143-157, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28898595

RESUMO

Whole-body regeneration (WBR)-the formation of an entire adult from only a small fragment of its own tissue-is extremely rare among chordates. Exceptionally, in the colonial ascidian Botrylloides leachii (Savigny, 1816) a fully functional adult is formed from their common vascular system after ablation of all adults from the colony in just 10 d, thanks to their high blastogenetic potential. While previous studies have identified key genetic markers and morphological changes, no study has yet focused on the hematological aspects of regeneration despite the major involvement of the remaining vascular system and the contained hemocytes in this process. To dissect this process, we analyzed colony blood flow patterns using time-lapse microscopy to obtain a quantitative description of the velocity, reversal pattern, and average distance traveled by hemocytes. We also observed that flows present during regeneration are powered by temporally and spatially synchronized contractions of the terminal ampullae. In addition, we revised previous studies of B. leachii hematology as well as asexual development using histological sectioning and compared the role played by hemocytes during WBR. We found that regeneration starts with a rapid healing response characterized by hemocyte aggregation and infiltration of immunocytes, followed by increased activity of hemoblasts, recruitment of macrophage-like cells for clearing the tissues of debris, and their subsequent disappearance from the circulation concomitant with the maturation of a single regenerated adult. Overall, we provide a detailed account of the hematological properties of regenerating B. leachii colonies, providing novel lines of inquiry toward the decipherment of regeneration in chordates.


Assuntos
Regeneração/fisiologia , Urocordados/fisiologia , Animais , Hemócitos/metabolismo , Urocordados/citologia
11.
Sci Rep ; 7(1): 1954, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512301

RESUMO

One mechanism of pollution resistance in marine populations is through transgenerational plasticity, whereby offspring capacity to resist pollution reflects parental exposure history. Our study aimed to establish correlations between oxidative stress biomarkers and key reproductive fitness parameters in the temperate sea urchin Evechinus chloroticus following exposure to dietary polycyclic aromatic hydrocarbons (PAHs). PAH-exposed adults exhibited total gonad tissue concentrations of PAHs in excess of 4 and 5 times baseline levels, for females and males respectively. Antioxidant enzymes were upregulated and oxidative lipid and protein damage to gonad tissues occurred. In addition, early stage offspring reflected maternal antioxidant status, with progeny derived from exposed females demonstrating significantly higher baselines than those derived from control females. Maternal exposure history enhanced the capacity of embryos to minimise oxidative damage to lipids and proteins following exposure to additional PAHs, but provided less of an advantage in protection against oxidative DNA damage. Abnormal embryonic development was largely independent of oxidative damage, remaining high in all embryo populations regardless of parental PAH-history. Overall, results document evidence for maternal transfer of antioxidant potential in E. chloroticus, but imply that a short-term inherited resilience against oxidative stress may not necessarily translate to a fitness or survival gain.


Assuntos
Antioxidantes/metabolismo , Poluentes Ambientais/efeitos adversos , Exposição Materna/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Ouriços-do-Mar/metabolismo , Animais , Metabolismo dos Carboidratos , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Embrião não Mamífero , Desenvolvimento Embrionário/efeitos dos fármacos , Poluição Ambiental , Ativação Enzimática , Feminino , Células Germinativas/metabolismo , Gônadas/metabolismo , Masculino , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
12.
Glob Chang Biol ; 23(2): 657-672, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27497050

RESUMO

As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges.


Assuntos
Mudança Climática , Ouriços-do-Mar/fisiologia , Água do Mar/química , Animais , Regiões Antárticas , Concentração de Íons de Hidrogênio , Oceanos e Mares
13.
Proc Biol Sci ; 283(1843)2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903867

RESUMO

Laboratory experiments suggest that calcifying developmental stages of marine invertebrates may be the most ocean acidification (OA)-sensitive life-history stage and represent a life-history bottleneck. To better extrapolate laboratory findings to future OA conditions, developmental responses in sea urchin embryos/larvae were compared under ecologically relevant in situ exposures on vent-elevated pCO2 and ambient pCO2 coral reefs in Papua New Guinea. Echinometra embryos/larvae were reared in meshed chambers moored in arrays on either venting reefs or adjacent non-vent reefs. After 24 and 48 h, larval development and morphology were quantified. Compared with controls (mean pH(T) = 7.89-7.92), larvae developing in elevated pCO2 vent conditions (pH(T) = 7.50-7.72) displayed a significant reduction in size and increased abnormality, with a significant correlation of seawater pH with both larval size and larval asymmetry across all experiments. Reciprocal transplants (embryos from vent adults transplanted to control conditions, and vice versa) were also undertaken to identify if adult acclimatization can translate resilience to offspring (i.e. transgenerational processes). Embryos originating from vent adults were, however, no more tolerant to reduced pH. Sea temperature and chlorophyll-a concentrations (i.e. larval nutrition) did not contribute to difference in larval size, but abnormality was correlated with chlorophyll levels. This study is the first to examine the response of marine larvae to OA scenarios in the natural environment where, importantly, we found that stunted and abnormal development observed in situ are consistent with laboratory observations reported in sea urchins, in both the direction and magnitude of the response.


Assuntos
Fontes Hidrotermais/química , Ouriços-do-Mar/fisiologia , Água do Mar/química , Animais , Dióxido de Carbono/química , Concentração de Íons de Hidrogênio , Larva/fisiologia , Oceanos e Mares , Papua Nova Guiné
14.
Aquat Toxicol ; 177: 106-15, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27267389

RESUMO

Evidence is growing to suggest that the capacity to withstand oxidative stress may play an important role in shaping life-history trade-offs, although little is known on the relationship in broadcast spawning marine invertebrates. In this group, variation in gamete quantity and quality are important drivers of offspring survival and successful recruitment. Therefore the provisioning of eggs with antioxidants may be an important driver of life history strategies because they play a critical role in preventing damage from reactive oxygen species to macromolecules. In this study, a suite of oxidative stress biomarkers was measured in the gonads and eggs of the sea urchin Evechinus chloroticus exposed to polycyclic aromatic hydrocarbons (PAHs). Links between oxidative stress markers and core components of fitness including fecundity, gamete quality and maternal transfer of antioxidants were assessed. Experimental induction of oxidative stress was achieved via exposure to a mix of four PAHs over a 21-day period. In PAH exposed individuals, we observed a significant upregulation of the antioxidant defence and detoxification enzymes SOD, CAT, GR, GPx and GST, as well as a greater pool of the non-enzymatic antioxidant glutathione in gonad tissue and eggs. In contrast, glutathione redox status was not affected by PAH exposure, with the percentage of reduced glutathione remaining at approximately 80% in both gonad tissue and released eggs. PAH-exposed adults experienced greater than three- and five-fold increases in oxidative protein and lipid damage, respectively, in gonad tissue. In contrast, eggs maintained low levels of damage, not differing from baseline levels found in eggs released from PAH-naïve mothers. PAH exposure also resulted in a 2-fold reduction in fecundity of reproductively mature females but no significant alteration to egg diameter. Although PAH-exposed females released fewer eggs, successful fertilisation of those eggs was slightly enhanced with average rates ranging from 90-99% in comparison to 76-90% in control eggs. Early-stage offspring reflected maternal antioxidant status with populations derived from PAH-exposed mothers demonstrating significantly higher antioxidant levels than those derived from PAH-naïve mothers. This maternally inherited protection enhanced the capacity of embryos to minimise oxidative damage to lipids and proteins during early development but, despite this, did not reduce the proportion of morphological abnormalities in the population. Overall, these findings indicate that when faced with short-term contaminant stress E. chloroticus has the capacity to trade high reproductive output during a spawning event for a greater antioxidant investment in eggs. However, this production of potentially more resilient offspring did not translate to a fitness gain, at least for the early larval stages in the present experimental conditions.


Assuntos
Antioxidantes/metabolismo , Dieta , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Reprodução/efeitos dos fármacos , Ouriços-do-Mar/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Feminino , Fertilidade/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Reprodução/fisiologia , Ouriços-do-Mar/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-27085373

RESUMO

The provision of yolk precursor proteins to the oviparous egg is crucial for normal embryo development. In Echinodermata, a transferrin-like yolk component termed major yolk protein (MYP) is a major precursor protein in Echinoidea and Holothuroidea. In contrast, in Asteroidea a single vitellogenin (Vtg) was recently identified, but its role as primary yolk protein remains unclear. To resolve the apparent MYP-Vtg dichotomy in sea stars and to understand the dynamics of candidate yolk protein gene expression during the reproductive cycle, we investigated the molecular structures of sea star Vtg and MYP and quantified their transcript levels during oogenesis. By combining protein sequencing of the predominant proteins in ovulated eggs of Patiriella regularis with ovarian transcriptome sequencing and molecular cloning, we characterized two cDNAs encoding two bona fide Vtgs (PrVtg1 and PrVtg2) and a partial cDNA encoding MYP (PrMYP). PrMYP mRNA was found in low abundance in growing oocytes, possibly as maternal transcripts for translation after ovulation. In contrast, PrVtg transcripts, whose levels varied during the reproductive cycle, were not found in developing oocytes - rather, they were detected in ovarian follicle cells and pyloric caeca, indicating an extra-oocytic origin. Vtg accumulating in oocytes was stored in the form of cleaved products, which constituted the most abundant yolk polypeptides in ovulated sea star eggs; their levels decreased during early embryonic and larval development. Together, these traits are the hallmarks of a classical yolk protein - and hence, we contend that Vtg, and not MYP, is the main yolk protein in asteroids.


Assuntos
Proteínas do Ovo/genética , Estrelas-do-Mar/genética , Vitelogeninas/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Sequência Conservada , Proteínas do Ovo/metabolismo , Embrião não Mamífero , Feminino , Expressão Gênica , Oócitos/fisiologia , Ovário/fisiologia , Filogenia , Pepinos-do-Mar/genética , Ouriços-do-Mar/genética , Estrelas-do-Mar/embriologia , Vitelogeninas/metabolismo
16.
Glob Chang Biol ; 22(7): 2451-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26762613

RESUMO

Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory-based experiments. Sea urchins are considered highly vulnerable to OA. We studied an Echinometra species on natural volcanic CO2 vents in Papua New Guinea, where they are CO2 -acclimatized and also subjected to secondary ecological changes from elevated CO2 . Near the vent site, the urchins experienced large daily variations in pH (>1 unit) and pCO2 (>2000 ppm) and average pH values (pHT 7.73) much below those expected under the most pessimistic future emission scenarios. Growth was measured over a 17-month period using tetracycline tagging of the calcareous feeding lanterns. Average-sized urchins grew more than twice as fast at the vent compared with those at an adjacent control site and assumed larger sizes at the vent compared to the control site and two other sites at another reef near-by. A small reduction in gonad weight was detected at the vents, but no differences in mortality, respiration, or degree of test calcification were detected between urchins from vent and control populations. Thus, urchins did not only persist but actually 'thrived' under extreme CO2 conditions. We suggest an ecological basis for this response: Increased algal productivity under increased pCO2 provided more food at the vent, resulting in higher growth rates. The wider implication of our observation is that laboratory studies on non-acclimatized specimens, which typically do not consider ecological changes, can lead to erroneous conclusions on responses to global change.


Assuntos
Aclimatação , Dióxido de Carbono/química , Ouriços-do-Mar/fisiologia , Água do Mar/química , Animais , Papua Nova Guiné
17.
Mar Genomics ; 25: 1-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26610933

RESUMO

The non-Antarctic Notothenioidei families, Bovichtidae, Pseudaphritidae and Eleginopsidae, diverged early from the main notothenioid lineage. They are important in clarifying the early evolutionary processes that triggered notothenioid evolution in the Antarctic. The early-diverged group represents 8% of all notothenioid species and never established themselves on the Antarctic shelf. Most attention has been paid to the Antarctic notothenioids and their limited physiological tolerance to climate change and increased temperatures. In this review, we discuss key life history traits that are characteristic of the non-Antarctic early-diverged notothenioid taxa as well as the genetic resources and population differentiation information available for this group. We emphasise the population fitness and dynamics of these species and indicate how resource management and conservation of the group can be strengthened through an integrative approach. Both Antarctic waters and the non-Antarctic regions face rapid temperature rises combined with strong anthropogenic exploitation. While it is expected that early-diverged notothenioid species may have physiological advantages over high Antarctic species, it is difficult to predict how climate changes might alter the geographic range, behaviour, phenology and ultimately genetic variability of these species. It is possible, however, that their high degree of endemism and dependence on local environmental specificities to complete their life cycles might enhance their vulnerability.


Assuntos
Distribuição Animal , Mudança Climática , Peixes/genética , Filogenia , Animais , Filogeografia
18.
J Photochem Photobiol B ; 149: 280-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26117416

RESUMO

The photoprotective role of mycosporine-like amino acids (MAA) against the generation of DNA cyclobutane pyrimidine dimers (CPD) was studied in the sessile intertidal anemone Actinia tenebrosa and the mobile intertidal gastropod Diloma aethiops through 27months at a mid-latitude New Zealand location. MAA were sequestered by A. tenebrosa and D. aethiops from their diet, although maximum total MAA levels in both species were not correlated with seasonal variation in maximum ambient UV-B levels recorded at the collection site. Temporal changes in total MAA in A. tenebrosa showed a six months lag-time in their concentration regarding to the environmental UV-B levels. This lag period corresponded to an observed increase in CPD production from spring to summer; suggesting that MAA do not completely protect the anemone from UV-B during summer. For D. aethiops, total MAA concentrations did not change significantly during the study, although qualitative changes in MAA were apparent. A month lag-time in MAA concentration in D. aethiops and possibly the physical barrier that the shell confers to the animal, can explain reduced CPD levels in comparative terms with A. tenebrosa. Although MAA are used by invertebrates for photoprotection, contrasting mobility characteristics and the presence of physical adaptations can confer them important protection levels during temporal changes of UV-B at mid-latitude places of the Southern Hemisphere.


Assuntos
Aminoácidos/metabolismo , Dano ao DNA , Gastrópodes/genética , Gastrópodes/efeitos da radiação , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Adaptação Fisiológica , Animais , Gastrópodes/metabolismo , Gastrópodes/fisiologia , Movimento/efeitos da radiação , Dímeros de Pirimidina/metabolismo , Anêmonas-do-Mar/metabolismo , Anêmonas-do-Mar/fisiologia , Fatores de Tempo
19.
J Exp Biol ; 218(Pt 15): 2373-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26056241

RESUMO

As a response to ocean warming, shifts in fish species distribution and changes in production have been reported that have been partly attributed to temperature effects on the physiology of animals. The Southern Ocean hosts some of the most rapidly warming regions on earth and Antarctic organisms are reported to be especially temperature sensitive. While cellular and molecular organismic levels appear, at least partially, to compensate for elevated temperatures, the consequences of acclimation to elevated temperature for the whole organism are often less clear. Growth and reproduction are the driving factors for population structure and abundance. The aim of this study was to assess the effect of long-term acclimation to elevated temperature on energy budget parameters in the high-Antarctic fish Trematomus bernacchii. Our results show a complete temperature compensation for routine metabolic costs after 9 weeks of acclimation to 4°C. However, an up to 84% reduction in mass growth was measured at 2 and 4°C compared with the control group at 0°C, which is best explained by reduced food assimilation rates at warmer temperatures. With regard to a predicted temperature increase of up to 1.4°C in the Ross Sea by 2200, such a significant reduction in growth is likely to affect population structures in nature, for example by delaying sexual maturity and reducing production, with severe impacts on Antarctic fish communities and ecosystems.


Assuntos
Aclimatação/fisiologia , Perciformes/metabolismo , Temperatura , Animais , Regiões Antárticas , Metabolismo Basal , Tamanho Corporal , Peso Corporal , Mudança Climática , Ingestão de Alimentos/fisiologia , Perciformes/crescimento & desenvolvimento
20.
Aquat Toxicol ; 161: 61-72, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667995

RESUMO

Legacy pollutants, including polycyclic aromatic hydrocarbons (PAHs) and metals, can occur in high concentrations in some Antarctic marine environments, particularly near scientific research stations. Oxidative stress is an important unifying feature underlying the toxicity of many chemical contaminants to aquatic organisms. However, the potential impacts of pollutants on the oxidative physiology of Antarctic marine invertebrates are not well documented. Sterechinus neumayeri is a common animal in the shallow subtidal benthos surrounding Antarctica, and is considered an important keystone species. The aim of the present study was to collect baseline oxidative biomarker data for S. neumayeri and to investigate the impacts of field exposure to chemical contaminants on gamete health and parent-to-offspring transfer of oxidative stress resilience. We analysed antioxidant enzyme activities, levels of the molecular antioxidant glutathione, protein carbonylation, lipid peroxidation and levels of 8-OHdG as oxidative stress biomarkers in S. neumayeri from a contaminant-impacted site near McMurdo Station and a relatively pristine site at Cape Evans. Biomarkers were analysed in adult gamete tissue and in early stage embryos exposed to AN8 fuel oil. PAHs were quantified as a proxy for contamination and were found to be elevated in urchins from the contaminated site (up to 231.67ng/g DW). These contaminant-experienced adult urchins produced eggs with greater levels of a broad suite of antioxidants, particularly superoxide dismutase, catalase and glyoxalase-I, than those from Cape Evans. In addition, embryos that were derived from contaminant-experienced mothers were endowed with higher baseline levels of antioxidants, which conferred an enhanced capacity to minimize oxidative damage to lipids, proteins and DNA when exposed to AN8 fuel. This pattern was strongest following exposure to 900ppm AN8, where lipid and protein damage was 5-7 times greater than baseline levels in contaminant-naïve female embryos in comparison to 3-4 times greater in contaminant-experienced female embryos. Despite this inherited resilience against oxidative stress, abnormal development was as high in these embryos when exposed to AN8 as in those derived from contaminant-naïve mothers (up to 80% abnormality), implying the conferred advantage may not translate to a fitness or survival gain, at least up to the blastulae stage. Our findings document the first evidence for parent-to-offspring transfer of oxidative stress resilience in an Antarctic marine invertebrate.


Assuntos
Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Regiões Antárticas , Antioxidantes , Catalase/metabolismo , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ouriços-do-Mar/química , Ouriços-do-Mar/enzimologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...