Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Bioorg Med Chem ; 27(18): 4101-4109, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31371219


The design of conjugates displaying simultaneously high selectivity and high affinity for different subtypes of integrins is a current challenge. The arginine-glycine-aspartic acid amino acid sequence (RGD) is one of the most efficient short peptides targeting these receptors. We report herein the development of linear and cyclic fluoro-C-glycoside"RGD" conjugates, taking advantage of the robustness and hydrophilicity of C-glycosides. As attested by in vitro evaluation, the design of these C-glyco"RGD" with a flexible three-carbon triazolyl linker allows distinct profiles towards αIIbß3 and αvß3 integrins. Molecular-dynamics simulations confirm the suitability of cyclic C-glyco-c(RGDfC) to target αvß3 integrin. These C-glyco"RGD" could become promising biological tools in particular for Positron Emission Tomography imaging.

Org Biomol Chem ; 8(19): 4346-55, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20697609


Cyclodextrins have attracted much interest in recent years because of their potential use as molecular reactors allowing organic reactions in aqueous solution. To better understand their effect on reaction mechanisms, we have carried out a computational study of a prototypical process (neutral ester hydrolysis) in a beta-cyclodextrin (beta-CD). Two models have been used for the reactor. The first and simpler one assumes that the medium can be described by a polarizable dielectric continuum. The second one takes into account the discrete nature of the beta-CD and water molecules thanks to a computational approach that combines the use of Quantum Mechanics, Molecular Mechanics and Molecular Dynamics techniques. We focus on neutral pH processes for which either acceleration or inhibition has experimentally been observed depending on ester derivatives. Our calculations rationalize such observations by showing that the two reaction mechanisms usually invoked for hydrolysis, stepwise (involving two transitions states with formation of a -C(OH)(2)OR tetrahedral intermediate) and concerted, undergo opposite effects in the beta-CD environment. The results highlight the role played by molecular shape recognition. Thus, in spite of a higher polarity exhibited by the three transition states with respect to the reactants, the interactions with the beta-CD cavity may either increase or decrease the activation barrier due to different 3D-arrangements of the chemical structures.