*Phys Rev Lett ; 124(15): 150603, 2020 Apr 17.*

##### RESUMO

Adiabatic pumping is characterized by a geometric contribution to the pumped charge, which can be nonzero even in the absence of a bias. However, as the driving speed is increased, nonadiabatic excitations gradually reduce the pumped charge, thereby limiting the maximal applicable driving frequencies. To circumvent this problem, we here extend the concept of shortcuts to adiabaticity to construct a control protocol which enables geometric pumping well beyond the adiabatic regime. Our protocol allows for an increase, by more than an order of magnitude, in the driving frequencies, and the method is also robust against moderate fluctuations of the control field. We provide a geometric interpretation of the control protocol and analyze the thermodynamic cost of implementing it. Our findings can be realized using current technology and potentially enable fast pumping of charge or heat in quantum dots, as well as in other stochastic systems from physics, chemistry, and biology.

*Sci Rep ; 10(1): 1751, 2020 Feb 04.*

##### RESUMO

We explore the problem of projecting the ground-state of an ultra-strong-coupled circuit-QED system into a non-energy-eigenstate. As a measurement apparatus we consider a nonlinear driven resonator. We find that the post-measurement state of the nonlinear resonator exhibits a large correlation with the post-measurement state of the ultra-strongly coupled system even when the coupling between measurement device and system is much smaller than the energy scales of the system itself. While the projection is imperfect, we argue that because of the strong nonlinear response of the resonator it works in a practical regime where a linear measurement apparatus would fail.

*J Chem Phys ; 152(6): 064103, 2020 Feb 14.*

##### RESUMO

Marcus and Landauer-Büttiker approaches to charge transport through molecular junctions describe two contrasting mechanisms of electronic conduction. In previous work, we have shown how these charge transport theories can be unified in the single-level case by incorporating lifetime broadening into the second-order quantum master equation. Here, we extend our previous treatment by incorporating lifetime broadening in the spirit of the self-consistent Born approximation. By comparing both theories to numerically converged hierarchical-equations-of-motion results, we demonstrate that our novel self-consistent approach rectifies shortcomings of our earlier framework, which are present especially in the case of relatively strong electron-vibrational coupling. We also discuss circumstances under which the theory developed here simplifies to the generalized theory developed in our earlier work. Finally, by considering the high-temperature limit of our new self-consistent treatment, we show how lifetime broadening can also be self-consistently incorporated into Marcus theory. Overall, we demonstrate that the self-consistent approach constitutes a more accurate description of molecular conduction while retaining most of the conceptual simplicity of our earlier framework.

*Nat Commun ; 10(1): 3721, 2019 Aug 19.*

##### RESUMO

A quantum system weakly coupled to a zero-temperature environment will relax, via spontaneous emission, to its ground-state. However, when the coupling to the environment is ultra-strong the ground-state is expected to become dressed with virtual excitations. This regime is difficult to capture with some traditional methods because of the explosion in the number of Matsubara frequencies, i.e., exponential terms in the free-bath correlation function. To access this regime we generalize both the hierarchical equations of motion and pseudomode methods, taking into account this explosion using only a biexponential fitting function. We compare these methods to the reaction coordinate mapping, which helps show how these sometimes neglected Matsubara terms are important to regulate detailed balance and prevent the unphysical emission of virtual excitations. For the pseudomode method, we present a general proof of validity for the use of superficially unphysical Matsubara-modes, which mirror the mathematical essence of the Matsubara frequencies.

*Phys Rev Lett ; 122(19): 190403, 2019 May 17.*

##### RESUMO

The ground state of a cavity-electron system in the ultrastrong coupling regime is characterized by the presence of virtual photons. If an electric current flows through this system, the modulation of the light-matter coupling induced by this nonequilibrium effect can induce an extracavity photon emission signal, even when electrons entering the cavity do not have enough energy to populate the excited states. We show that this ground state electroluminescence, previously identified in a single-qubit system [Phys. Rev. Lett. 116, 113601 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.113601] can arise in a many-electron system. The collective enhancement of the light-matter coupling makes this effect, described beyond the rotating wave approximation, robust in the thermodynamic limit, allowing its observation in a broad range of physical systems, from a semiconductor heterostructure with flatband dispersion to various implementations of the Dicke model.

*J Chem Phys ; 149(8): 084112, 2018 Aug 28.*

##### RESUMO

We analyze the role of coherent, non-perturbative system-bath interactions in a photosynthetic heat engine. Using the reaction-coordinate formalism to describe the vibrational phonon-environment in the engine, we analyze the efficiency around an optimal parameter regime predicted in earlier studies. We show that, in the limit of high-temperature photon irradiation, the phonon-assisted population transfer between bright and dark states is suppressed due to dephasing from the photon environment, even in the Markov limit where we expect the influence of each bath to have an independent and additive effect on the dynamics. Manipulating the phonon bath properties via its spectral density enables us to identify both optimal low- and high-frequency regimes where the suppression can be removed. This suppression of transfer and its removal suggests that it is important to consider carefully the non-perturbative and cooperative effects of system-bath environments in designing artificial photosynthetic systems and also that manipulating inter-environmental interactions could provide a new multidimensional "lever" by which photocells and other types of quantum devices can be optimized.

*Phys Rev Lett ; 119(5): 053601, 2017 Aug 04.*

##### RESUMO

Here we describe how, utilizing a time-dependent optomechanical interaction, a mechanical probe can provide an amplified measurement of the virtual photons dressing the quantum ground state of an ultrastrongly coupled light-matter system. We calculate the thermal noise tolerated by this measurement scheme and discuss an experimental setup in which it could be realized.

*Sci Rep ; 7(1): 3728, 2017 06 16.*

##### RESUMO

We introduce the concept of spatio-temporal steering (STS), which reduces, in special cases, to Einstein-Podolsky-Rosen steering and the recently-introduced temporal steering. We describe two measures of this effect referred to as the STS weight and robustness. We suggest that these STS measures enable a new way to assess nonclassical correlations in an open quantum network, such as quantum transport through nano-structures or excitation transfer in a complex biological system. As one of our examples, we apply STS to check nonclassical correlations among sites in a photosynthetic pigment-protein complex in the Fenna-Matthews-Olson model.

*Sci Rep ; 7: 39720, 2017 01 03.*

##### RESUMO

We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that "site 5" in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.

##### Assuntos

Proteínas de Bactérias/química , Técnicas Biossensoriais/métodos , Complexos de Proteínas Captadores de Luz/química , Ressonância de Plasmônio de Superfície/métodos , Proteínas de Bactérias/genética , Transferência de Energia , Complexos de Proteínas Captadores de Luz/genética , Metais/química , Modelos Teóricos , Nanoestruturas/química*Sci Rep ; 6: 28204, 2016 06 23.*

##### RESUMO

Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model.

*Phys Rev Lett ; 116(11): 113601, 2016 Mar 18.*

##### RESUMO

Electroluminescence, the emission of light in the presence of an electric current, provides information on the allowed electronic transitions of a given system. It is commonly used to investigate the physics of strongly coupled light-matter systems, whose eigenfrequencies are split by the strong coupling with the photonic field of a cavity. Here we show that, together with the usual electroluminescence, systems in the ultrastrong light-matter coupling regime emit a uniquely quantum radiation when a flow of current is driven through them. While standard electroluminescence relies on the population of excited states followed by spontaneous emission, the process we describe herein extracts bound photons from the dressed ground state and it has peculiar features that unequivocally distinguish it from usual electroluminescence.

*J Chem Phys ; 144(4): 044110, 2016 Jan 28.*

##### RESUMO

We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.

*Phys Rev Lett ; 116(2): 020503, 2016 Jan 15.*

##### RESUMO

Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation which allows one to remotely prepare, or steer, the state of a distant quantum system. While EPR steering can be thought of as a purely spatial correlation, there does exist a temporal analogue, in the form of single-system temporal steering. However, a precise quantification of such temporal steering has been lacking. Here, we show that it can be measured, via semidefinite programing, with a temporal steerable weight, in direct analogy to the recently proposed EPR steerable weight. We find a useful property of the temporal steerable weight in that it is a nonincreasing function under completely positive trace-preserving maps and can be used to define a sufficient and practical measure of strong non-Markovianity.

*Phys Rev Lett ; 115(21): 216803, 2015 Nov 20.*

##### RESUMO

We predict a bistability in the photon emission from a solid-state single-atom laser comprising a microwave cavity coupled to a voltage-biased double quantum dot. To demonstrate that the single-atom laser is bistable, we evaluate the photon emission statistics and show that the distribution takes the shape of a tilted ellipse. The switching rates of the bistability can be extracted from the electrical current and the shot noise in the quantum dots. This provides a means to control the photon emission statistics by modulating the electronic transport in the quantum dots. Our prediction is robust against moderate electronic decoherence and dephasing and is important for current efforts to realize single-atom lasers with gate-defined quantum dots as the gain medium.

*Sci Rep ; 5: 12753, 2015 Aug 04.*

##### RESUMO

When dealing with system-reservoir interactions in an open quantum system, such as a photosynthetic light-harvesting complex, approximations are usually made to obtain the dynamics of the system. One question immediately arises: how good are these approximations, and in what ways can we evaluate them? Here, we propose to use entanglement and a measure of non-Markovianity as benchmarks for the deviation of approximate methods from exact results. We apply two frequently-used perturbative but non-Markovian approximations to a photosynthetic dimer model and compare their results with that of the numerically-exact hierarchy equation of motion (HEOM). This enables us to explore both entanglement and non-Markovianity measures as means to reveal how the approximations either overestimate or underestimate memory effects and quantum coherence. In addition, we show that both the approximate and exact results suggest that non-Markonivity can, counter-intuitively, increase with temperature, and with the coupling to the environment.

##### Assuntos

Complexos de Proteínas Captadores de Luz/química , Modelos Estatísticos , Fotossíntese/fisiologia , Teoria Quântica , Benchmarking , Transferência de Energia , Cadeias de Markov , Movimento (Física) , Temperatura , Termodinâmica*Phys Rev E Stat Nonlin Soft Matter Phys ; 88(3): 032120, 2013 Sep.*

##### RESUMO

We investigate, using the hierarchy method, the entanglement and the excitation transfer efficiency of the Fenna-Matthews-Olson (FMO) complex under two different local modifications: the suppression of transitions between particular sites and localized changes to the protein environment. We find that inhibiting the connection between site 5 and site 6, or completely disconnecting site 5 from the complex, leads to a dramatic enhancement of the entanglement between site 6 and site 7. Similarly, the transfer efficiency actually increases if site 5 is entirely disconnected from the complex. We further show that if sites 5 and 7 are conjointly removed, the efficiency falls. This suggests that while not contributing to the transport efficiency in a normal complex, site 5 may introduce a redundant transport route in case of damage to site 7. Our results suggest an overall robustness of the excitation-energy transfer in the FMO complex under mutations, local defects, and other abnormal situations.

*Sci Rep ; 2: 869, 2012.*

##### RESUMO

We show how to realize a single-photon Dicke state in a large one-dimensional array of two-level systems, and discuss how to test its quantum properties. The realization of single-photon Dicke states relies on the cooperative nature of the interaction between a field reservoir and an array of two-level-emitters. The resulting dynamics of the delocalized state can display Rabi-like oscillations when the number of two-level emitters exceeds several hundred. In this case, the large array of emitters is essentially behaving like a "mirror-less cavity". We outline how this might be realized using a multiple-quantum-well structure or a dc-SQUID array coupled to a transmission line, and discuss how the quantum nature of these oscillations could be tested with an extension of the Leggett-Garg inequality.

*Sci Rep ; 2: 885, 2012.*

##### RESUMO

Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent "quantumness" still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two "quantum witnesses" to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems.

##### Assuntos

Complexos de Proteínas Captadores de Luz , Teoria Quântica , Nanoestruturas*Phys Rev Lett ; 105(17): 176801, 2010 Oct 22.*

##### RESUMO

We consider the question of how to distinguish quantum from classical transport through nanostructures. To address this issue we have derived two inequalities for temporal correlations in nonequilibrium transport in nanostructures weakly coupled to leads. The first inequality concerns local charge measurements and is of general validity; the second concerns the current flow through the device and is relevant for double quantum dots. Violation of either of these inequalities indicates that physics beyond that of a classical Markovian model is occurring in the nanostructure.

*Phys Rev Lett ; 92(7): 073602, 2004 Feb 20.*

##### RESUMO

We consider the entanglement properties of the quantum phase transition in the single-mode superradiance model, involving the interaction of a boson mode and an ensemble of atoms. For an infinite size system, the atom-field entanglement diverges logarithmically with the correlation length exponent. Using a continuous variable representation, we compare this to the divergence of the entropy in conformal field theories and derive an exact expression for the scaled concurrence and the cusplike nonanalyticity of the momentum squeezing.