Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
2.
Clin Cancer Res ; 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728525

RESUMO

PURPOSE: Selinexor is an oral selective inhibitor of exportin-1 (XPO1) with efficacy in various solid and hematological tumors. We assessed intra-tumoral penetration, safety, and efficacy of selinexor monotherapy for recurrent glioblastoma. PATIENTS AND METHODS: Seventy-six adults with Karnofsky Performance Status{greater than or equal to}60 were enrolled. Patients undergoing cytoreductive surgery received up to three selinexor doses (twice weekly) pre-operatively (Arm A; N=8 patients). Patients not undergoing surgery received 50mg/m2 (Arm B, N=24), or 60mg (Arm C, N=14) twice weekly, or 80mg once weekly (Arm D; N=30). Primary endpoint was six-month progression-free survival rate (PFS6). RESULTS: Median selinexor concentrations in resected tumors from patients receiving pre-surgical selinexor was 105.4nM (range 39.7-291nM). In Arms B, C, and D, respectively, the PFS6 was 10% (95%CI, 2.79-35.9), 7.7% (95%CI, 1.17-50.6), and 17% (95%CI, 7.78-38.3). Measurable reduction in tumor size was observed in 19 (28%) and RANO-response rate overall was 8.8% (Arm B, 8.3% (95%CI, 1.0-27.0); C:7.7% (95%CI, 0.2-36.0); D:10% (95%CI, 2.1-26.5)), with one complete and two durable partial responses in Arm D. Serious adverse events (AEs) occurred in 26 (34%) patients; one (1.3%) was fatal. The most common treatment-related AEs were fatigue (61%), nausea (59%), decreased appetite (43%) and thrombocytopenia (43%), and were manageable by supportive care and dose modification. Molecular studies identified a signature predictive of response (AUC=0.88). CONCLUSION: At 80mg weekly, single-agent selinexor induced responses and clinically relevant PFS6 with manageable side effects requiring dose reductions. Ongoing trials are evaluating safety and efficacy of selinexor in combination with other therapies for newly diagnosed or recurrent glioblastoma.

3.
Oncotarget ; 12(18): 1749-1762, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34504648

RESUMO

Triple negative breast cancer (TNBC) is a deadly disease with limited treatment options. Selinexor is a selective inhibitor of nuclear export that binds covalently to exportin 1 thereby reactivating tumor suppressor proteins and downregulating expression of oncogenes and DNA damage repair (DDR) proteins. Olaparib is a poly (ADP-ribose) polymerase (PARP) inhibitor approved for the treatment of patients with breast cancer harboring BRCA mutations. We examined the effects of co-treatment with selinexor and olaparib in TNBC cell lines. BRCA1 wildtype (BRCA1-wt) and BRCA1 mutant (BRCA1-mut) TNBC cell lines were treated with selinexor and/or olaparib and effects on cell viability and cell cycle were evaluated. The effects of treatment were also evaluated in mouse xenograft models generated with BRCA1-wt and BRCA1-mut TNBC cell lines. Treatment with selinexor inhibited cell proliferation and survival of all TNBC cell lines tested in vitro. This effect was enhanced following treatment of the cells with the combination of selinexor and olaparib, which showed synergistic effects on tumor growth inhibition in MDA-MB-468-derived (BRCA1-wt) and MDA-MB-436-derived (BRCA1-mut) xenografts. As co-treatment with selinexor and olaparib exhibits anti-tumor activity regardless of BRCA1 mutation status, the clinical implications of the combination warrant further investigation.

4.
Mol Cancer Ther ; 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583979

RESUMO

CRM1 inhibitors have demonstrated antitumor effects in ovarian and other cancers; however, rational combinations are largely unexplored. We performed a high-throughput drug library screen to identify drugs that might combine well with selinexor in ovarian cancer. Next, we tested the combination of selinexor with the top hit from the drug screen in vitro and in vivo Finally, we assessed for mechanisms underlying the identified synergy using reverse phase protein arrays (RPPA). The drug library screen assessing 688 drugs identified olaparib (a PARP inhibitor) as the most synergistic combination with selinexor. Synergy was further demonstrated by MTT assays. In the A2780luc ip1 mouse model, the combination of selinexor and olaparib yielded significantly lower tumor weight and fewer tumor nodules compared with the control group (P < 0.04 and P < 0.03). In the OVCAR5 mouse model, the combination yielded significantly fewer nodules (P = 0.006) and markedly lower tumor weight compared with the control group (P = 0.059). RPPA analysis indicated decreased expression of DNA damage repair proteins and increased expression of tumor suppressor proteins in the combination treatment group. Collectively, our preclinical findings indicate that combination with selinexor to expand the utility and efficacy of PARP inhibitors in ovarian cancer warrants further exploration.

5.
Mol Cancer Ther ; 20(10): 1836-1845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253597

RESUMO

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed ß-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.

6.
Leuk Lymphoma ; : 1-12, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323164

RESUMO

Selinexor, a selective inhibitor of nuclear export, has demonstrated promising activity in patients with acute myeloid leukemia (AML). This randomized, phase II study evaluated selinexor 60 mg twice weekly (n = 118) vs. physician's choice (PC) treatment (n = 57) in patients aged ≥60 years with relapsed/refractory (R/R) AML. The primary outcome was overall survival (OS). Median OS did not differ significantly for selinexor vs. PC (3.2 vs. 5.6 months; HR = 1.18 [95% CI: 0.79-1.75]; p = 0.422). Complete remission (CR) plus CR with incomplete hematologic recovery trending in favor of selinexor occurred in a minority of patients. Selinexor treated patients had an increased incidence of adverse events. The most common grade ≥3 adverse events were thrombocytopenia, febrile neutropenia, anemia, hyponatremia. Despite well-balanced baseline characteristics, there were numerically higher rates of TP53 mutations, prior myelodysplastic syndrome, and lower absolute neutrophil counts in the selinexor group; warranting further investigation of selinexor in more carefully stratified R/R AML patients.Registered trial: NCT02088541.

7.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206543

RESUMO

Aberrant nuclear protein transport, often observed in cancer, causes mislocalization-dependent inactivation of critical cellular proteins. Earlier we showed that overexpression of exportin 1 is linked to higher grade and Gleason score in metastatic castration resistant prostate cancer (mCRPC). We also showed that a selective inhibitor of nuclear export (SINE) selinexor and second generation eltanexor (KPT-8602) could suppress mCRPC growth, reduce androgen receptor (AR), and re-sensitize to androgen deprivation therapy. Here we evaluated the combination of KPT-8602 with PARP inhibitors (PARPi) olaparib, veliparib and rucaparib in 22rv1 mCRPC cells. KPT-8602 synergized with PARPi (CI < 1) at pharmacologically relevant concentrations. KPT-8602-PARPi showed superior induction of apoptosis compared to single agent treatment and caused up-regulation of pro-apoptotic genes BAX, TP53 and CASPASE 9. Mechanistically, KPT-8602-PARPi suppressed AR, ARv7, PSA and AR targets FOXA1 and UBE2C. Western blot analysis revealed significant down-regulation of AR, ARv7, UBE2C, SAM68, FOXA1 and upregulation of cleaved PARP and cleaved CASPASE 3. KPT-8602 with or without olaparib was shown to reduce homologous recombination-regulated DNA damage response targets including BRCA1, BRCA2, CHEK1, EXO1, BLM, RAD51, LIG1, XRCC3 and RMI2. Taken together, this study revealed the therapeutic potential of a novel combination of KPT-8602 and PARP inhibitors for the treatment of mCRPC.


Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Masculino , Modelos Biológicos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
8.
Am J Hematol ; 96(9): 1120-1130, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062004

RESUMO

In the phase 3 BOSTON study, patients with multiple myeloma (MM) after 1-3 prior regimens were randomized to once-weekly selinexor (an oral inhibitor of exportin 1 [XPO1]) plus bortezomib-dexamethasone (XVd) or twice-weekly bortezomib-dexamethasone (Vd). Compared with Vd, XVd was associated with significant improvements in median progression-free survival (PFS), overall response rate (ORR), and lower rates of peripheral neuropathy, with trends in overall survival (OS) favoring XVd. In BOSTON, 141 (35.1%) patients had MM with high-risk (presence of del[17p], t[4;14], t[14;16], or ≥4 copies of amp1q21) cytogenetics (XVd, n = 70; Vd, n = 71), and 261 (64.9%) exhibited standard-risk cytogenetics (XVd, n = 125; Vd, n = 136). Among patients with high-risk MM, median PFS was 12.91 months for XVd and 8.61 months for Vd (HR, 0.73 [95% CI, (0.4673, 1.1406)], p = 0.082), and ORRs were 78.6% and 57.7%, respectively (OR 2.68; p = 0.004). In the standard-risk subgroup, median PFS was 16.62 months for XVd and 9.46 months for Vd (HR 0.61; p = 0.004), and ORRs were 75.2% and 64.7%, respectively (OR 1.65; p = 0.033). The safety profiles of XVd and Vd in both subgroups were consistent with the overall population. These data suggest that selinexor can confer benefits to patients with MM regardless of cytogenetic risk. ClinicalTrials.gov identifier: NCT03110562.


Assuntos
Antineoplásicos/uso terapêutico , Bortezomib/uso terapêutico , Dexametasona/uso terapêutico , Hidrazinas/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Triazóis/uso terapêutico , Adulto , Idoso , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/efeitos adversos , Análise Citogenética , Dexametasona/efeitos adversos , Feminino , Humanos , Hidrazinas/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Intervalo Livre de Progressão , Resultado do Tratamento , Triazóis/efeitos adversos , Adulto Jovem
9.
Antiviral Res ; 192: 105115, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157321

RESUMO

The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent global pandemic. The nuclear export protein (XPO1) has a direct role in the export of SARS-CoV proteins including ORF3b, ORF9b, and nucleocapsid. Inhibition of XPO1 induces anti-inflammatory, anti-viral, and antioxidant pathways. Selinexor is an FDA-approved XPO1 inhibitor. Through bioinformatics analysis, we predicted nuclear export sequences in the ACE-2 protein and confirmed by in vitro testing that inhibition of XPO1 with selinexor induces nuclear localization of ACE-2. Administration of selinexor inhibited viral infection prophylactically as well as therapeutically in vitro. In a ferret model of COVID-19, selinexor treatment reduced viral load in the lungs and protected against tissue damage in the nasal turbinates and lungs in vivo. Our studies demonstrated that selinexor downregulated the pro-inflammatory cytokines IL-1ß, IL-6, IL-10, IFN-γ, TNF-α, and GMCSF, commonly associated with the cytokine storm observed in COVID-19 patients. Our findings indicate that nuclear export is critical for SARS-CoV-2 infection and for COVID-19 pathology and suggest that inhibition of XPO1 by selinexor could be a viable anti-viral treatment option.


Assuntos
COVID-19/tratamento farmacológico , Hidrazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Triazóis/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Antivirais/farmacologia , COVID-19/virologia , Chlorocebus aethiops , Citocinas , Furões , Humanos , Carioferinas/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/virologia , SARS-CoV-2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células Vero , Replicação Viral
10.
Pharmaceuticals (Basel) ; 14(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072442

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Here, we pursued a combinatorial therapeutic approach to enhance the activity of selinexor, the first-in-class XPO1 inhibitor, by miR-34a ectopic expression in human TNBC experimental models. Anti-proliferative activity induced by selinexor and miR-34a expression, singly and in combination, was evaluated by MTS assay and cell counting. The effect of treatments on survivin and apoptosis-related proteins was assessed by western blotting and ELISA. The antitumor and toxic effects of individual and combined treatments were evaluated on TNBC orthotopic xenografts in SCID mice. Selinexor consistently showed anti-proliferative activity, although to a variable extent, in the different TNBC cell lines and caused the impairment of survivin expression and intracellular distribution, accompanied by apoptosis induction. Consistent with in vitro data, the XPO1 inhibitor variably affected the growth of TNBC orthotopic xenografts. miR-34a cooperated with selinexor to reduce survivin expression and improved its anti-proliferative activity in TNBC cells. Most importantly, miR-34a expression markedly enhanced selinexor antitumor activity in the less sensitive TNBC xenograft model, in absence of toxicity. Our data form a solid foundation for promoting the use of a miR-34a-based approach to improve the therapeutic efficacy of selinexor in TNBC patients.

11.
Transl Oncol ; 14(8): 101114, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33975179

RESUMO

Across many cancer types in adults, upregulation of the nuclear-to-cytoplasmic transport protein Exportin-1 (XPO1) correlates with poor outcome and responsiveness to selinexor, an FDA-approved XPO1 inhibitor. Similar data are emerging in childhood cancers, for which selinexor is being evaluated in early phase clinical studies. Using proteomic profiling of primary tumor material from patients with high-risk neuroblastoma, as well as gene expression profiling from independent cohorts, we have demonstrated that XPO1 overexpression correlates with poor patient prognosis. Neuroblastoma cell lines are also sensitive to selinexor in the low nanomolar range. Based on these findings and knowledge that bortezomib, a proteasome inhibitor, blocks degradation of XPO1 cargo proteins, we hypothesized that combination treatment with selinexor and bortezomib would synergistically inhibit neuroblastoma cellular proliferation. We observed that selinexor promoted nuclear retention of IkB and that bortezomib augmented the ability of selinexor to induce cell-cycle arrest and cell death by apoptosis. This synergy was abrogated through siRNA knockdown of IkB. The synergistic effect of combining selinexor and bortezomib in vitro provides rationale for further investigation of this combination treatment for patients with high-risk neuroblastoma.

12.
J Cancer Res Clin Oncol ; 147(7): 2025-2033, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33856525

RESUMO

BACKGROUND: The nuclear pore complexes (NPCs) are built of about 30 different nucleoporins and act as key regulators of molecular traffic between the cytoplasm and the nucleus for sizeable proteins (> 40 kDa) which must enter the nucleus. Various nuclear transport receptors are involved in import and export processes of proteins through the nuclear pores. The most prominent nuclear export receptor is chromosome region maintenance 1 (CRM1), also known as exportin 1 (XPO1). One of its cargo proteins is the prolyl hydroxylase 2 (PHD2) which is involved in the initiation of the degradation of hypoxia-inducible factors (HIFs) under normoxia. HIFs are proteins that regulate the cellular adaptation under hypoxic conditions. They are involved in many aspects of cell viability and play an important role in the hypoxic microenvironment of cancer. In cancer, CRM1 is often overexpressed thus being a putative target for the development of new cancer therapies. The newly FDA-approved pharmaceutical Selinexor (KPT-330) selectively inhibits nuclear export via CRM1 and is currently tested in additional Phase-III clinical trials. In this study, we investigated the effect of CRM1 inhibition on the subcellular localization of HIF-1α and radiosensitivity. METHODS: Human hepatoma cells Hep3B and human osteosarcoma cells U2OS were treated with Selinexor. Intranuclear concentration of HIF-1α protein was measured using immunoblot analysis. Furthermore, cells were irradiated with 2-8 Gy after treatment with Selinexor compared to untreated controls. RESULTS: Selinexor significantly reduced the intranuclear level of HIF-1α protein in human hepatoma cells Hep3B and human osteosarcoma cells U2OS. Moreover, we demonstrated by clonogenic survival assays that Selinexor leads to dose-dependent radiosensitization in Hep3B-hepatoma and U2OS-osteosarcoma cells. CONCLUSION: Targeting the HIF pathway by Selinexor might be an attractive tool to overcome hypoxia-induced radioresistance.


Assuntos
Carcinoma Hepatocelular/radioterapia , Hidrazinas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Carioferinas/antagonistas & inibidores , Osteossarcoma/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Triazóis/farmacologia , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/radioterapia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/radioterapia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Tumorais Cultivadas
13.
Clin Cancer Res ; 27(12): 3307-3316, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33785483

RESUMO

PURPOSE: The nuclear exporter protein exportin-1 (XPO1) is overexpressed in non-Hodgkin lymphoma (NHL) and correlates with poor prognosis. We evaluated enhancing R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) activity in NHL by targeted inhibition of XPO1 using the selective inhibitor of nuclear export (SINE) compounds. PATIENTS AND METHODS: We evaluated the antitumor activity of SINE compounds in combination with CHO chemotherapy in vitro and in vivo. Newly diagnosed NHL patients in a phase I dose-escalation study received R-CHOP for 6 cycles with weekly selinexor (60, 80, and 100 mg), then selinexor maintenance therapy for one year. RT-PCR, Western blotting, and RNA sequencing were performed on patient blood samples. RESULTS: SINE compounds synergized with CHO in vitro in NHL cell lines and in vivo in our murine xenograft model. In our phase I study, selinexor was dosed at 60 mg (n = 6) and 80 mg (n = 6). The most common adverse events (AE) among 12 patients were fatigue (67%) and nausea (100%). Grade 3-4 AEs were infrequent. Ten evaluable patients had an overall response rate of 100% and complete remission rate of 90% with sustained remissions (median follow-up: 476 days). Maximally tolerated dose was not reached; however, the recommended phase II dose was 60 mg selinexor weekly after evaluating tolerability and discontinuation rates for each dose cohort. Analysis of patient blood samples revealed downregulation of XPO1 and several prosurvival markers. CONCLUSIONS: SINE compounds enhance the activity of CHO in vitro and in vivo. Selinexor in combination with R-CHOP was generally well tolerated and showed encouraging efficacy in NHL (NCT03147885).

15.
Oncogene ; 40(6): 1176-1190, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33414491

RESUMO

Ewing sarcoma (ES) is the second most common bone tumor in children and young adults. Unfortunately, there have been minimal recent advancements in improving patient outcomes, especially in metastatic and recurrent diseases. In this study, we investigated the biological role of p21-activated kinases (PAKs) in ES, and the ability to therapeutically target them in high-risk disease. Via informatics analysis, we established the inverse association of PAK1 and PAK4 expression with clinical stage and outcome in ES patients. Through expression knockdown and small-molecule inhibition of PAKs, utilizing FRAX-597, KPT-9274, and PF-3758309 in multiple ES cell lines and patient-derived xenograft models, we further explored the role of PAKs in ES tumor growth and metastatic capabilities. In vitro studies in several ES cell lines indicated that diminishing PAK1 and PAK4 expression reduces tumor cell viability, migratory, and invasive properties. In vivo studies using PAK4 inhibitors, KPT-9274 and PF-3758309 demonstrated significant inhibition of primary and metastatic tumor formation, while transcriptomic analysis of PAK4-inhibitor-treated tumors identified concomitant suppression of Notch, ß-catenin, and hypoxia-mediated signatures. In addition, the analysis showed enrichment of anti-tumor immune regulatory mechanisms, including interferon (IFN)-É£ and IFN-α responses. Altogether, our molecular and pre-clinical studies are the first to establish a critical role for PAKs in ES development and progression, and consequently as viable therapeutic targets for the treatment of high-risk ES in the near future.


Assuntos
Sarcoma de Ewing/tratamento farmacológico , Quinases Ativadas por p21/genética , Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interferon-alfa/genética , Interferon gama/genética , Pirazóis/farmacologia , Pirróis/farmacologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/antagonistas & inibidores
16.
Cancer Res ; 81(1): 199-212, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168646

RESUMO

Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Pirazóis/farmacologia , Pirróis/farmacologia , Rabdomiossarcoma/patologia , Quinases Ativadas por p21/antagonistas & inibidores , Proteínas ras/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Criança , Humanos , Masculino , Camundongos , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas ras/genética
17.
Cell Mol Life Sci ; 78(4): 1837-1851, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32851475

RESUMO

Proteasome inhibitors, such as bortezomib and carfilzomib, have shown efficacy in anti-cancer therapy in hematological diseases but not in solid cancers. Here, we found that liposarcomas (LPS) are susceptible to proteasome inhibition, and identified drugs that synergize with carfilzomib, such as selinexor, an inhibitor of XPO1-mediated nuclear export. Through quantitative nuclear protein profiling and phospho-kinase arrays, we identified potential mode of actions of this combination, including interference with ribosome biogenesis and inhibition of pro-survival kinase PRAS40. Furthermore, by assessing global protein levels changes, FADS2, a key enzyme regulating fatty acids synthesis, was found down-regulated after proteasome inhibition. Interestingly, SC26196, an inhibitor of FADS2, synergized with carfilzomib. Finally, to identify further combinational options, we performed high-throughput drug screening and uncovered novel drug interactions with carfilzomib. For instance, cyclosporin A, a known immunosuppressive agent, enhanced carfilzomib's efficacy in vitro and in vivo. Altogether, these results demonstrate that carfilzomib and its combinations could be repurposed for LPS clinical management.


Assuntos
Ácidos Graxos Dessaturases/genética , Carioferinas/genética , Lipossarcoma/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Ácidos Graxos Dessaturases/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazinas/farmacologia , Lipossarcoma/genética , Lipossarcoma/patologia , Piperazinas/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Triazóis/farmacologia
19.
Cells ; 9(10)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023194

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive disease with poor prognosis and limited therapeutic options. Recent advances in the immunotherapy field have enabled the development of new treatment strategies, among which the use of bispecific antibodies (BsAbs), able to redirect T cells against tumors, has shown promising results. In particular, a BsAb that uses TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) as a target was constructed and demonstrated good results in redirecting CD3+ T cells to kill TRAIL-R2-expressing TNBC cells. In the present study, we investigated whether treatment with selinexor, a selective inhibitor of nuclear export (SINE) targeting exportin-1/chromosome maintenance protein 1 (XPO1/CRM1), could potentiate the antitumor activity of this BsAb. In combination experiments, we found that selinexor-exposed TNBC cells exhibited greater growth inhibition when treated with the TRAIL-R2xCD3 BsAb than that expected by simple additivity. Similarly, the apoptosis rate in selinexor/TRAIL-R2xCD3 BsAb-treated TNBC cells was significantly higher than that observed after exposure to either single agent. Together, our results suggest that the combination of selinexor and TRAIL-R2xCD3 BsAb can be a viable anticancer strategy and indicate this treatment as a promising therapeutic option for TNBC patients.


Assuntos
Anticorpos Biespecíficos/fisiologia , Hidrazinas/uso terapêutico , Triazóis/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Hidrazinas/farmacologia , Triazóis/farmacologia
20.
Cancers (Basel) ; 12(9)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847042

RESUMO

The majority of breast cancer specific deaths in women with estrogen receptor positive (ER+) tumors occur due to metastases that are resistant to therapy. There is a critical need for novel therapeutic approaches to achieve tumor regression and/or maintain therapy responsiveness in metastatic ER+ tumors. The objective of this study was to elucidate the role of metabolic pathways that undermine therapy efficacy in ER+ breast cancers. Our previous studies identified Exportin 1 (XPO1), a nuclear export protein, as an important player in endocrine resistance progression and showed that combining selinexor (SEL), an FDA-approved XPO1 antagonist, synergized with endocrine agents and provided sustained tumor regression. In the current study, using a combination of transcriptomics, metabolomics and metabolic flux experiments, we identified certain mitochondrial pathways to be upregulated during endocrine resistance. When endocrine resistant cells were treated with single agents in media conditions that mimic a nutrient deprived tumor microenvironment, their glutamine dependence for continuation of mitochondrial respiration increased. The effect of glutamine was dependent on conversion of the glutamine to glutamate, and generation of NAD+. PGC1α, a key regulator of metabolism, was the main driver of the rewired metabolic phenotype. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and our findings reveal a critical role that ERα-XPO1 crosstalk plays in reducing cancer recurrences. Combining SEL with current therapies used in clinical management of ER+ metastatic breast cancer shows promise for treating and keeping these cancers responsive to therapies in already metastasized patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...