Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Handb Exp Pharmacol ; 268: 437-448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34196812


Since allergic diseases are of great public health relevance, effective primary prevention strategies are urgently needed. This chapter gives an overview of existing primary prevention programs on environmental exposures and dietary strategies based on epidemiological studies which have defined risk- and protective factors for the development of allergic diseases.The allergy protective effect mediated by growing up on a traditional farm environment is well studied. But the exact underlying mechanisms have still not been fully clarified and have not yet led to concrete prevention strategies. The beneficial effect of avoiding cigarette smoke exposure, indoor moisture and molds in pregnancy and childhood on the development of asthma is well documented. Whereas the avoidance of house dust mite exposure is not recommended to prevent eczema or allergy. Dietary supplementation with vitamins, pre- and probiotics in pregnant woman and their offspring is not harmful but evidence for the prevention of allergic diseases is still lacking. Fish oil consumption was shown to be asthma protective. The early introduction of peanuts and egg protein to prevent peanut and egg allergy in children with atopic dermatitis is promising. Further studies are needed to increase the overall evidence in allergy prevention. Most studies lack methodological standards such as randomization and blinding. More evidence is in demand on the potential beneficial impact of multifaceted interventional studies. The future of allergy prevention strategies might be based on individual risk assessment. Therefore, research in the immunological and molecular basis of allergic diseases needs to be promoted.

Asma , Dermatite Atópica , Eczema , Hipersensibilidade , Criança , Dieta , Feminino , Humanos , Hipersensibilidade/prevenção & controle , Lactente , Gravidez
Pediatr Allergy Immunol ; 29(8): 823-833, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102794


BACKGROUND: Asthma is the most common chronic disease in children. Underlying immunologic mechanisms-in particular of different phenotypes-are still just partly understood. The objective of the study was the identification of distinct cellular pathways in allergic asthmatics (AA) and nonallergic asthmatics (NA) vs healthy controls (HC). METHODS: Peripheral blood mononuclear cells (PBMCs) of steroid-naïve children (n(AA/NA/HC) = 35/13/34)) from the CLARA study (n = 275) were stimulated (anti-CD3/CD28, LpA) or kept unstimulated. Gene expression was investigated by transcriptomics and quantitative RT-PCR. Differentially regulated pathways between phenotypes were assessed after adjustment for sex and age (KEGG pathways). Networks based on correlations of gene expression were built using force-directed graph drawing. RESULTS: Allergic asthmatics vs NA and asthmatics overall vs HC showed significantly different expression of Ca2+ and innate immunity-associated pathways. PCR analysis confirmed significantly increased Ca2+ -associated gene regulation (ORMDL3 and ATP2A3) in asthmatics vs HC, most prominent in AA. Innate immunity receptors (LY75, TLR7), relevant for virus infection, were also upregulated in AA and NA compared to HC. AA and NA could be differentiated by increased ATP2A3 and FPR2 in AA, decreased CLEC4E in AA, and increased IFIH1 expression in NA following anti-CD3/28 stimulation vs unstimulated (fold change). CONCLUSIONS: Ca2+ regulation and innate immunity response pattern to viruses were activated in PBMCs of asthmatics. Asthma phenotypes were differentially characterized by distinct regulation of ATP2A3 and expression of innate immune receptors (FPR2, CLEC4E, IFIH1). These genes may present promising targets for future in-depth investigation with the long-term goal of more phenotype-specific therapeutic interventions in asthmatics.

Asma/metabolismo , Cálcio/metabolismo , Imunidade Inata/genética , Leucócitos Mononucleares/metabolismo , Adolescente , Asma/imunologia , Técnicas de Cultura de Células , Criança , Pré-Escolar , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Masculino , Análise em Microsséries/métodos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transdução de Sinais
Pediatr Allergy Immunol ; 29(1): 34-41, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29047170


BACKGROUND: Allergic and non-allergic childhood asthma has been characterized by distinct immune mechanisms. While interferon regulating factor 1 (IRF-1) polymorphisms (SNPs) influence atopy risk, the effect of SNPs on asthma phenotype-specific immune mechanisms is unclear. We assessed whether IRF-1 SNPs modify distinct immune-regulatory pathways in allergic and non-allergic childhood asthma (AA/NA). METHODS: In the CLARA study, asthma was characterized by doctor's diagnosis and AA vs NA by positive or negative specific IgE. Children were genotyped for four tagging SNPs within IRF-1 (n = 172). mRNA expression was measured with qRT-PCR. Gene expression was analyzed depending on genetic variants within IRF-1 and phenotype including haplotype estimation and an allelic risk score. RESULTS: Carrying the risk alleles of IRF-1 in rs10035166, rs2706384, or rs2070721 was associated with increased risk for AA. Carrying the non-risk allele in rs17622656 was associated with lower risk for AA but not NA. In AA carrying the risk alleles, an increased pro-inflammatory expression of ICAM3, IRF-8, XBP-1, IFN-γ, RGS13, RORC, and TSC2 was observed. NOD2 expression was decreased in AA with risk alleles in rs2706384 and rs10035166 and with risk haplotype. Further, AA with risk haplotype showed increased IL-13 secretion. NA with risk allele in rs2070721 compared to non-risk allele in rs17622656 showed significantly upregulated calcium, innate, mTOR, neutrophil, and inflammatory-associated genes. CONCLUSION: IRF-1 polymorphisms influence the risk for childhood allergic asthma being associated with increased pro-inflammatory gene regulation. Thus, it is critical to implement IRF-1 genetics in immune assessment for childhood asthma phenotypes.

Asma/genética , Fator Regulador 1 de Interferon/genética , Adolescente , Criança , Pré-Escolar , Citocinas/metabolismo , Predisposição Genética para Doença , Genótipo , Humanos , Imunoglobulina E/sangue , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Testes de Função Respiratória/métodos , Risco
Mol Cell Pediatr ; 3(1): 27, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27468754


Asthma represents the most common chronic childhood disease worldwide. Whereas preschool children present with wheezing triggered by different factors (multitrigger and viral wheeze), clinical asthma manifestation in school children has previously been classified as allergic and non-allergic asthma. For both, the underlying immunological mechanisms are not yet understood in depth in children. Treatment is still prescribed regardless of underlying mechanisms, and children are not always treated successfully. This review summarizes recent key findings on the complex mechanisms of the development and manifestation of childhood asthma. Whereas traditional classification of childhood asthma is primarily based on clinical symptoms like wheezing and atopy, novel approaches to specify asthma phenotypes are under way and face challenges such as including the stability of phenotypes over time and transition into adulthood. Epidemiological studies enclose more information on the patient's disease history and environmental influences. Latest studies define endotypes based on molecular and cellular mechanisms, for example defining risk and protective single nucleotide polymorphisms (SNPs) and new immune phenotypes, showing promising results. Also, regulatory T cells and recently discovered T helper cell subtypes such as Th9 and Th17 cells were shown to be important for the development of asthma. Innate lymphoid cells (ILC) could play a critical role in asthma patients as they produce different cytokines associated with asthma. Epigenetic findings showed different acetylation and methylation patterns for children with allergic and non-allergic asthma. On a posttranscriptional level, miRNAs are regulating factors identified to differ between asthma patients and healthy controls and also indicate differences within asthma phenotypes. Metabolomics is another exciting chapter important for endotyping asthmatic children. Despite the development of new biomarkers and the discovery of new immunological molecules, the complex puzzle of childhood asthma is still far from being completed. Addressing the current challenges of distinct clinical asthma and wheeze phenotypes, including their stability and underlying endotypes, involves addressing the interplay of innate and adaptive immune regulatory mechanisms in large, interdisciplinary cohorts.

Immun Ageing ; 10(1): 17, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23642143


BACKGROUND: CD4+ and CD8+ T cells reside in the human bone marrow (BM) and show a heightened activation state. However, only small sample sizes are available from sources such as the iliac crest. Larger samples can be obtained from the femur in the course of hip replacement surgery. It was therefore the goal of the present study to compare the phenotype and function of BM T cells from different sources from elderly persons and to investigate how femur derived bone marrow T cells can serve as a tool to gain a better understanding of the role of adaptive immune cells in the BM in old age. RESULTS: Bone marrow mononuclear cells (BMMC) were isolated from either the iliac crest or the femur shaft. As expected the yield of mononuclear cells was higher from femur than from iliac crest samples. There were no phenotypic differences between BMMC from the two sources. Compared to PBMC, both BM sample types contained fewer naïve and more antigen experienced CD4+ as well as CD8+ T cells, which, in contrast to peripheral cells, expressed CD69. Cytokine production was also similar in T cells from both BM types. Larger sample sizes allowed the generation of T cell lines from femur derived bone marrow using non-specific as well as specific stimulation. The phenotype of T cell lines generated by stimulation with OKT-3 and IL-2 for two weeks was very similar to the one of ex vivo BM derived T cells. Such lines can be used for studies on the interaction of different types of BM cells as shown by co-culture experiments with BM derived stromal cells. Using CMVNLV specific T cell lines we additionally demonstrated that BM samples from the femur are suitable for the generation of antigen specific T cell lines, which can be used in studies on the clonal composition of antigen specific BM T cells. CONCLUSION: In conclusion, our results demonstrate that BMMC from the femur shaft are a useful tool for studies on the role of T cells in the BM in old age.