Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Filtros adicionais











Intervalo de ano
1.
BMC Ecol ; 19(1): 30, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391040

RESUMO

BACKGROUND: Circular data are gathered in diverse fields of science where measured traits are cyclical in nature: such as compass directions or times of day. The most common statistical question asked of a sample of circular data is whether the data seems to be drawn from a uniform distribution or one that is concentrated around one or more preferred directions. The overwhelmingly most-popular test of the null hypothesis of uniformity is the Rayleigh test, even though this test is known to have very low power in some circumstances. Here we present simulation studies evaluating the performance of tests developed as alternatives to the Rayleigh test. RESULTS: The results of our simulations demonstrate that a single test, the Hermans and Rasson test is almost as powerful as the Rayleigh test in unimodal situations (when the Rayleigh test does well) but substantially outperforms the Rayleigh test in multimodal situations. CONCLUSION: We recommend researchers switch to routine use of the new Hermans and Rasson test. We also demonstrate that all available tests have low power to detect departures from uniformity involving more than two concentrated regions: we recommend that where researchers suspect such complex departures that they collect substantially-sized samples and apply another recent test due to Pycke that was designed specifically for such complex cases. We provide clear textual descriptions of how to implement each of these recommended tests and encode them in R functions that we provide.

2.
Sci Rep ; 9(1): 3105, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816116

RESUMO

Magnetic sensing is used to structure every-day, non-migratory behaviours in many animals. We show that crayfish exhibit robust spontaneous magnetic alignment responses. These magnetic behaviours are altered by interactions with Branchiobdellidan worms, which are obligate ectosymbionts. Branchiobdellidan worms have previously been shown to have positive effects on host growth when present at moderate densities, and negative effects at relatively high densities. Here we show that crayfish with moderate densities of symbionts aligned bimodally along the magnetic northeast-southwest axis, similar to passive magnetic alignment responses observed across a range of stationary vertebrates. In contrast, crayfish with high symbiont densities failed to exhibit consistent alignment relative to the magnetic field. Crayfish without symbionts shifted exhibited quadramodal magnetic alignment and were more active. These behavioural changes suggest a change in the organization of spatial behaviour with increasing ectosymbiont densities. We propose that the increased activity and a switch to quadramodal magnetic alignment may be associated with the use of systematic search strategies. Such a strategy could increase contact-rates with conspecifics in order to replenish the beneficial ectosymbionts that only disperse between hosts during direct contact. Our results demonstrate that crayfish perceive and respond to magnetic fields, and that symbionts influence magnetically structured spatial behaviour of their hosts.

3.
Neuron ; 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30449657

RESUMO

Corpus callosum malformations are associated with a broad range of neurodevelopmental diseases. We report that de novo mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCC-CH-CM) in the absence of megalencephaly. We show that MAST1 is a microtubule-associated protein that is predominantly expressed in post-mitotic neurons and is present in both dendritic and axonal compartments. We further show that Mast1 null animals are phenotypically normal, whereas the deletion of a single amino acid (L278del) recapitulates the distinct neurological phenotype observed in patients. In animals harboring Mast1 microdeletions, we find that the PI3K/AKT3/mTOR pathway is unperturbed, whereas Mast2 and Mast3 levels are diminished, indicative of a dominant-negative mode of action. Finally, we report that de novo MAST1 substitutions are present in patients with autism and microcephaly, raising the prospect that mutations in this gene give rise to a spectrum of neurodevelopmental diseases.

4.
PLoS Biol ; 16(10): e3000018, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30278038

RESUMO

Over the last three decades, evidence has emerged that low-intensity magnetic fields can influence biological systems. It is now well established that migratory birds have the capacity to detect the Earth's magnetic field; it has been reported that power lines are associated with childhood leukemia and that pulsed magnetic fields increase the production of reactive oxidative species (ROS) in cellular systems. Justifiably, studies in this field have been viewed with skepticism, as the underlying molecular mechanisms are unknown. In the accompanying paper, Sherrard and colleagues report that low-flux pulsed electromagnetic fields (PEMFs) result in aversive behavior in Drosophila larvae and ROS production in cell culture. They further report that these responses require the presence of cryptochrome, a putative magnetoreceptor. If correct, it is conceivable that carcinogenesis associated with power lines, PEMF-induced ROS generation, and animal magnetoreception share a common mechanistic basis.

5.
Behav Ecol Sociobiol ; 72(8): 128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100666

RESUMO

Circular data are common in biological studies. The most fundamental question that can be asked of a sample of circular data is whether it suggests that the underlying population is uniformly distributed around the circle, or whether it is concentrated around at least one preferred direction (e.g. a migratory goal or activity phase). We compared the statistical power of five commonly used tests (the Rayleigh test, the V-test, Watson's test, Kuiper's test and Rao's spacing test) across a range of different unimodal scenarios. The V-test showed higher power for symmetrical distributions, Rao's spacing performed worst for all explored unimodal distributions tested and the remaining three tests showed very similar performance. However, the V-test only applies if the hypothesis is restricted to one (pre-specified) direction of interest. In all other unimodal cases, we recommend using the Rayleigh test. Much less explored is the multimodal case with data concentrated around several directions. We performed power simulations for a variety of multimodal situations, testing the performance of the widely used Rayleigh, Rao's, Watson, and Kuiper's tests as well as the more recent Bogdan and Hermans-Rasson tests. Our analyses of alternative statistical methods show that the commonly used tests lack statistical power in many of multimodal cases. Transformation of the raw data (e.g. doubling the angles) can overcome some of the issues, but only in the case of perfect f-fold symmetry. However, the Hermans-Rasson method, which is not yet implemented in any software package, outcompetes the alternative tests (often by substantial margins) in most of the multimodal situations explored. We recommend the wider uptake of the powerful but hitherto neglected Hermans-Rasson method. In summary, we provide guidance for biologists helping them to make decisions when testing circular data for single or multiple departures from uniformity.

6.
Nat Neurosci ; 21(8): 1139, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29875394

RESUMO

In the supplementary information PDF originally posted, there were discrepancies from the integrated supplementary information that appeared in the HTML; the former has been corrected as follows. In the legend to Supplementary Fig. 2c, "major organs of the mouse" has been changed to "major organs of the adult mouse." In the legend to Supplementary Fig. 6d,h, "At E14.5 Mbe/Mbe mutants have a smaller percentage of Brdu positive cells in bin 3" has been changed to "At E14.5 Mbe/Mbe mutants have a higher percentage of Brdu positive cells in bin 3."

7.
Elife ; 72018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29651983

RESUMO

A diverse array of species on the planet employ the Earth's magnetic field as a navigational aid. As the majority of these animals are migratory, their utility to interrogate the molecular and cellular basis of the magnetic sense is limited. Vidal-Gadea and colleagues recently argued that the worm Caenorhabditis elegans possesses a magnetic sense that guides their vertical movement in soil. In making this claim, they relied on three different behavioral assays that involved magnetic stimuli. Here, we set out to replicate their results employing blinded protocols and double wrapped coils that control for heat generation. We find no evidence supporting the existence of a magnetic sense in C. elegans. We further show that the Vidal-Gadea hypothesis is problematic as the adoption of a correction angle and a fixed trajectory relative to the Earth's magnetic inclination does not necessarily result in vertical movement.

8.
Nat Neurosci ; 21(2): 207-217, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29311744

RESUMO

The formation of the vertebrate brain requires the generation, migration, differentiation and survival of neurons. Genetic mutations that perturb these critical cellular events can result in malformations of the telencephalon, providing a molecular window into brain development. Here we report the identification of an N-ethyl-N-nitrosourea-induced mouse mutant characterized by a fractured hippocampal pyramidal cell layer, attributable to defects in neuronal migration. We show that this is caused by a hypomorphic mutation in Vps15 that perturbs endosomal-lysosomal trafficking and autophagy, resulting in an upregulation of Nischarin, which inhibits Pak1 signaling. The complete ablation of Vps15 results in the accumulation of autophagic substrates, the induction of apoptosis and severe cortical atrophy. Finally, we report that mutations in VPS15 are associated with cortical atrophy and epilepsy in humans. These data highlight the importance of the Vps15-Vps34 complex and the Nischarin-Pak1 signaling hub in the development of the telencephalon.

9.
Environ Pollut ; 228: 19-25, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28501632

RESUMO

The Earth's magnetic field is involved in spatial behaviours ranging from long-distance migration to non-goal directed behaviours, such as spontaneous magnetic alignment (SMA). Mercury is a harmful pollutant most often generated from anthropogenic sources that can bio-accumulate in animal tissue over a lifetime. We compared SMA of hatchling snapping turtles from mothers captured at reference (i.e., low mercury) and mercury contaminated sites. Reference turtles showed radio frequency-dependent SMA along the north-south axis, consistent with previous studies of SMA, while turtles with high levels of maternally inherited mercury failed to show consistent magnetic alignment. In contrast, there was no difference between reference and mercury exposed turtles on standard performance measures. The magnetic field plays an important role in animal orientation behaviour and may also help to integrate spatial information from a variety of sensory modalities. As a consequence, mercury may compromise the performance of turtles in a wide variety of spatial tasks. Future research is needed to determine the threshold for mercury effects on snapping turtles, whether mercury exposure compromises spatial behaviour of adult turtles, and whether mercury has a direct effect on the magnetoreception mechanism(s) that mediate SMA or a more general effect on the nervous system.


Assuntos
Exposição Materna , Mercúrio/metabolismo , Tartarugas/fisiologia , Poluentes Químicos da Água/metabolismo , Animais , Feminino , Magnetismo , Mercúrio/toxicidade , Poluentes Químicos da Água/toxicidade
10.
Behav Brain Res ; 323: 47-55, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28130172

RESUMO

The generation, migration, and differentiation of neurons requires the functional integrity of the microtubule cytoskeleton. Mutations in the tubulin gene family are known to cause various neurological diseases including lissencephaly, ocular motor disorders, polymicrogyria and amyotrophic lateral sclerosis. We have previously reported that mutations in TUBB5 cause microcephaly that is accompanied by severe intellectual impairment and motor delay. Here we present the characterization of a Tubb5 mouse model that allows for the conditional expression of the pathogenic E401K mutation. Homozygous knockin animals exhibit a severe reduction in brain size and in body weight. These animals do not show any significant impairment in general activity, anxiety, or in the acoustic startle response, however, present with notable defects in motor coordination. When assessed on the static rod apparatus mice took longer to orient and often lost their balance completely. Interestingly, mutant animals also showed defects in prepulse inhibition, a phenotype associated with sensorimotor gating and considered an endophenotype for schizophrenia. This study provides insight into the behavioral consequences of tubulin gene mutations.


Assuntos
Encéfalo/patologia , Atividade Motora , Inibição Pré-Pulso , Tubulina (Proteína)/genética , Tubulina (Proteína)/fisiologia , Alelos , Animais , Ansiedade/genética , Comportamento Animal , Peso Corporal , Modelos Animais de Doenças , Feminino , Homozigoto , Masculino , Camundongos Transgênicos , Teste de Desempenho do Rota-Rod
11.
J Theor Biol ; 399: 141-7, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27059891

RESUMO

A wealth of evidence provides support for magnetic alignment (MA) behavior in a variety of disparate species within the animal kingdom, in which an animal, or a group of animals, show a tendency to align the body axis in a consistent orientation relative to the geomagnetic field lines. Interestingly, among vertebrates, MA typically coincides with the north-south magnetic axis, however, the mean directional preferences of an individual or group of organisms is often rotated clockwise from the north-south axis. We hypothesize that this shift is not a coincidence, and future studies of this subtle, yet consistent phenomenon may help to reveal some properties of the underlying sensory or processing mechanisms, that, to date, are not well understood. Furthermore, characterizing the fine structure exhibited in MA behaviors may provide key insights to the biophysical substrates mediating magnetoreception in vertebrates. Therefore, in order to determine if a consistent shift is exhibited in taxonomically diverse vertebrates, we performed a meta-analysis on published MA datasets from 23 vertebrate species that exhibited an axial north-south preference. This analysis revealed a significant clockwise shift from the north-south magnetic axis. We summarize and discuss possible competing hypotheses regarding the proximate mechanisms underlying the clockwise shifted MA and conclude that the most likely cause of such a shift would be a lateralization in central processing of magnetic information.


Assuntos
Lateralidade Funcional/fisiologia , Fenômenos Magnéticos , Orientação , Vertebrados/fisiologia , Animais , Especificidade da Espécie
12.
PLoS One ; 10(5): e0124728, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25978736

RESUMO

We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.


Assuntos
Magnetismo , Ondas de Rádio , Tartarugas/fisiologia , Animais , Ecossistema
13.
Front Zool ; 11(1): 29, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666825

RESUMO

INTRODUCTION: The ability to relocate home or breeding sites after experimental removal has been observed in several amphibians and the sensory basis of this behavior has been studied in some temperate-region species. However, the actual return trajectories have rarely been quantified in these studies and it remains unknown how different cues guide the homing behavior. Dendrobatidae (dart-poison frogs) exhibit some of the most complex spatial behaviors among amphibians, such as territoriality and tadpole transport. Recent data showed that Allobates femoralis, a frog with paternal tadpole transport, successfully returns to the home territories after experimental translocations of up to 400 m. In the present study, we used harmonic direction finding to obtain homing trajectories. Additionally, we quantified the initial orientation of individuals, translocated 10 m to 105 m, in an arena assay. RESULTS: Tracking experiments revealed that homing trajectories are characterized by long periods of immobility (up to several days) and short periods (several hours) of rapid movement, closely fitting a straight line towards the home territory. In the arena assay, the frogs showed significant homeward orientation for translocation distances of 35 m to 70 m but not for longer and shorter distances. CONCLUSIONS: Our results describe a very accurate homing behavior in male A. femoralis. The straightness of trajectories and initial homeward orientation suggest integration of learned landmarks providing a map position for translocated individuals. Future research should focus on the role of learning in homing behavior and the exact nature of cues being used.

14.
PLoS One ; 8(8): e73112, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023673

RESUMO

Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180(°) so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.


Assuntos
Magnetismo , Aprendizagem em Labirinto/fisiologia , Orientação/fisiologia , Água , Animais , Cricetinae , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
15.
Front Zool ; 8: 6, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21418651

RESUMO

BACKGROUND: Magnetic orientation is a taxonomically widespread phenomenon in the animal kingdom, but has been little studied in anuran amphibians. We collected Common Toads (Bufo bufo) during their migration towards their spawning pond and tested them shortly after displacement for possible magnetic orientation in arena experiments. Animals were tested in two different set-ups, in the geomagnetic field and in a reversed magnetic field. To the best of our knowledge, this is the first study testing orientation of adult anurans with a controlled magnetic field of a known strength and alignment. RESULTS: After displacement, toads oriented themselves unimodally under the geomagnetic field, following their former migration direction (d-axis). When the magnetic field was reversed, the distribution of bearings changed from a unimodal to a bimodal pattern, but still along the d-axis. The clustering of bearings was only significant after the toads reached the outer circle, 60.5 cm from their starting point. At a virtual inner circle (diameter 39 cm) and at the start of the experiment, orientation of toads did not show any significant pattern. CONCLUSIONS: The experimental set-up used in our study is suitable to test orientation behaviour of the Common Toad. We speculate that toads had not enough time to relocate their position on an internal map. Hence, they followed their former migration direction. Bimodality in orientation when exposed to the reversed magnetic field could be the result of a cue conflict, between magnetic and possibly celestial cues. For maintaining their migration direction toads use, at least partly, the geomagnetic field as a reference system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA