Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 124(24): 4990-4997, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32515597

RESUMO

Free cationic manganese atoms and clusters Mnx+ (x = 1-3) have been reacted with small carboxylic acids (formic, acetic, and propionic acids) and methyl acetate in a flow tube reactor held at room temperature. The geometry of the thus formed complexes has subsequently been studied via infrared multiple-photon dissociation (IR-MPD) spectroscopy and density-functional theory (DFT) calculations. The IR-MPD spectra of the acid complexes show two signals in the C═O stretch region indicating the coexistence of two conformers. In agreement, the DFT calculations reveal that the-intrinsically less stable-cis-conformer of the carboxylic acids binds more strongly to Mn+ than the trans-conformer, which leads to the energetic stabilization of the former. This stronger binding is attributed to a stronger electrostatic interaction with the manganese cation. A similar stabilization is also predicted for the cis-conformer of methyl acetate; however, the resulting change of the C═O stretch eigenfrequency is too small to be resolved in the experiment. This finding can open up completely new routes for the future room-temperature preparation of the cis-conformers of carboxylic acids and their derivatives.

2.
J Phys Chem A ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31994885

RESUMO

The interaction of manganese oxide clusters MnxOy+ (x = 2-5, y ≥ x) with CO2 is studied via infrared multiple-photon dissociation spectroscopy (IR-MPD) in the spectral region of 630-1860 cm-1. Along with vibrational modes of the manganese oxide cluster core, two bands are observed around 1200-1450 cm-1 and they are assigned to the characteristic Fermi resonance of CO2 arising from anharmonic coupling between the symmetric stretch vibration and the overtone of the bending mode. The spectral position of the lower frequency band depends on the cluster size and the number of adsorbed CO2 molecules, whereas the higher frequency band is largely unaffected. Despite these effects, the observation of the Fermi dyad indicates only a small perturbation of the CO2 molecule. This finding is confirmed by the theoretical investigation of Mn2O2(CO2)+ revealing only small orbital mixing between the dimanganese oxide cluster and CO2, indicative of mainly electrostatic interaction.

3.
Phys Chem Chem Phys ; 21(43): 23922-23930, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31661104

RESUMO

Infrared multiple-photon dissociation (IR-MPD) spectroscopy and density functional theory (DFT) calculations have been employed to elucidate the geometric structure of a series of di-manganese oxide clusters Mn2Ox+ (x = 4-7). The theoretical exploration predicts that all investigated clusters contain a rhombus-like Mn2O2 core with up to four, terminally bound, oxygen atoms. The short Mn-O bond length of the terminal oxygen atoms of ≤1.58 Å indicates triple bond character instead of oxyl radical formation. However, the IR-MPD spectra reveal that higher energy isomers with up to two O2 molecules η2-coordinated to the cluster core can be kinetically trapped under the given experimental conditions. In these complexes, all O2 units are activated to superoxide species. In addition, the sequential increase of the oxygen content in the cluster allows for a controlled increase of the positive charge localized on the Mn atoms reaching a maximum for Mn2O7+.

4.
J Am Soc Mass Spectrom ; 30(10): 1895-1905, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31300975

RESUMO

Infrared multiple photon dissociation (IR-MPD) spectroscopy in conjunction with density functional theory (DFT) calculations has been employed to study the activation of molecular oxygen and ethylene co-adsorbed on a free gold dimer cation Au2+. Both studied complexes, Au2O2(C2H4)+ and Au2O2(C2H4)2+, show distinct features of both intact O2 and ethylene co-adsorbed on the cluster. However, the ethylene C=C double bond is activated, increasing in length by up to 0.07 Å compared with the free molecule, and the red shift of the O-O vibration frequency increases with the number of adsorbed ethylene molecules, indicating a small but increasing activation of the O-O bond. The small O2 activation and the rather weak interaction between O2 and C2H4 are also reflected in the calculated electronic structure of the co-adsorption complexes which shows only a small occupation of the empty anti-bonding O2 2π*2p orbital as well as the localization of most of the Kohn-Sham orbitals on O2 and C2H4, respectively, with only limited mixing between O2 and C2H4 orbitals. The results are compared with theoretical studies on neutral AuxO2(C2H4) (x = 3, 5, 7, 9) complexes.

5.
Angew Chem Int Ed Engl ; 58(25): 8504-8509, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30985054

RESUMO

One of the fundamental processes in nature, the oxidation of water, is catalyzed by a small CaMn3 O4 ⋅MnO cluster located in photosystem II (PS II). Now, the first successful preparation of a series of isolated ligand-free tetrameric Can Mn4-n O4 + (n=0-4) cluster ions is reported, which are employed as structural models for the catalytically active site of PS II. Gas-phase reactivity experiments with D2 O and H2 18 O in an ion trap reveal the facile deprotonation of multiple water molecules via hydroxylation of the cluster oxo bridges for all investigated clusters. However, only the mono-calcium cluster CaMn3 O4 + is observed to oxidize water via elimination of hydrogen peroxide. First-principles density functional theory (DFT) calculations elucidate mechanistic details of the deprotonation and oxidation reactions mediated by CaMn3 O4 + as well as the role of calcium.

6.
J Phys Condens Matter ; 30(50): 504001, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30465551

RESUMO

The interaction of ethylene with free gold clusters of different sizes and charge states has been previously shown theoretically to involve two different adsorption modes of the C2H4 molecule, namely: the di-σ- and π-bonded ethylene adsorption configurations. Here, we present the first experimental investigation of the structure of a series of gas-phase gold-ethylene complexes, [Formula: see text]. By employing infrared multiple-photon dissociation spectroscopy in conjunction with first-principles calculations it is revealed that up to three C2H4 molecules preferably bind to gold cations in a π-bonded configuration. The binding of all ethylene molecules is found to be dominated by partial electron donation from the ethylene molecules to the gold clusters leading to an activation of the C-C bond. The cooperative action of multiple coadsorbed C2H4 on [Formula: see text] is shown to enable additional charge back-donation and an enhanced C-C bond activation. In contrast, the strong C-H bond is not weakened and the experimental spectra do not give any indication for C-H bond dissociation. The possible correlations of the C-C bond stretch vibration with the C-C bond length and the net charge transfer are discussed.

7.
Phys Chem Chem Phys ; 20(11): 7781-7790, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29504007

RESUMO

The thermal decomposition of free cationic iron-sulfur clusters FexSy+ (x = 0-7, y = 0-9) is investigated by collisional post-heating in the temperature range between 300 and 1000 K. With increasing temperature the preferential formation of stoichiometric FexSy+ (y = x) or near stoichiometric FexSy+ (y = x ± 1) clusters is observed. In particular, Fe4S4+ represents the most abundant product up to 600 K, Fe3S3+ and Fe3S2+ are preferably formed between 600 K and 800 K, and Fe2S2+ clearly dominates the cluster distribution above 800 K. These temperature dependent fragment distributions suggest a sequential fragmentation mechanism, which involves the loss of sulfur and iron atoms as well as FeS units, and indicate the particular stability of Fe2S2+. The potential fragmentation pathways are discussed based on first principles calculations and a mechanism involving the isomerization of the cluster prior to fragmentation is proposed. The fragmentation behavior of the iron-sulfur clusters is in marked contrast to the previously reported thermal dissociation of analogous iron-oxide clusters, which resulted in the release of O2 molecules only, without loss of metal atoms and without any tendency to form particular prominent and stable FexOy+ clusters at high temperatures.

8.
Angew Chem Int Ed Engl ; 56(43): 13406-13410, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28869784

RESUMO

Methane represents the major constituent of natural gas. It is primarily used only as a source of energy by means of combustion, but could also serve as an abundant hydrocarbon feedstock for high quality chemicals. One of the major challenges in catalysis research nowadays is therefore the development of materials that selectively cleave one of the four C-H bonds of methane and thus make it amenable for further chemical conversion into valuable compounds. By employing infrared spectroscopy and first-principles calculations it is uncovered herein that the interaction of methane with small gold cluster cations leads to selective C-H bond dissociation and the formation of hydrido methyl complexes, H-Aux+ -CH3 . The distinctive selectivity offered by these gold clusters originates from a fine interplay between the closed-shell nature of the d states and relativistic effects in gold. Such fine balance in fundamental interactions could prove to be a tunable feature in the rational design of a catalyst.

9.
Phys Chem Chem Phys ; 19(11): 8055-8060, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28265613

RESUMO

The gas-phase reactions between a series of di-iron sulfur clusters Fe2Sx+ (x = 1-3) and the small alkenes C2H4, C3H6, and C4H8 have been investigated by means of Fourier-transform ion-cyclotron resonance mass spectrometry. For all studied alkenes, the reaction efficiency is found to increase in the order Fe2S+ < Fe2S2+ < Fe2S3+. In particular, Fe2S+ and Fe2S2+ only form simple association products, whereas the sulfur-rich Fe2S3+ is able to dehydrogenate propene and 2-butene via desulfurization of the cluster and formation of H2S. This indicates an increased propensity to induce oxidation reactions, i.e. oxidative power, of Fe2S3+ that is attributed to an increased formal oxidation state of the iron atoms. Furthermore, the ability of Fe2S3+ to activate and dissociate the C-H bonds of the alkenes is observed to increase with increasing size of the alkene and thus correlates with the alkene ionization energy.

10.
Phys Chem Chem Phys ; 18(23): 15727-37, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27226138

RESUMO

In the quest for cheap and earth abundant but highly effective and energy efficient water splitting catalysts, manganese oxide represents one of the materials of choice. In the framework of a new hierarchical modeling strategy we employ free non-ligated manganese oxide clusters MnxOx+y(+) (x = 2-5, y = -1, 0, 1, 2) as simplified molecular models to probe the interaction of water with nano-scale manganese oxide materials. Infrared multiple-photon dissociation (IR-MPD) spectroscopy in conjunction with first-principles spin density functional theory calculations is applied to study several series of MnxOx+y(H2O)n(+) complexes and reveal that the reaction of water with MnxOx+y(+) leads to the deprotonation of the water molecules via hydroxylation of the cluster oxo-bridges. This process is independent of the formal Mn oxidation state and occurs already for the first adsorbed water molecule and it proceeds until all oxo-bridges are hydroxylated. Additional water molecules are bound intact and favorably form H3O2 units with the hydroxylated oxo-bridges. Water adsorption and deprotonation is also found to induce structural transformations of the cluster core, including dimensionality crossover. Furthermore, the IR-MPD measurements reveal that clusters with one oxygen atom in excess MnxOx+1(+) contain a terminal O atom while clusters with two oxygen atoms in excess MnxOx+2(+) contain an intact O2 molecule which, however, dissociates upon adsorption of a minimum number of water molecules. These basic concepts could aid the future design of artificial water-splitting molecular catalysts.

11.
Angew Chem Int Ed Engl ; 54(50): 15113-7, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26494552

RESUMO

As the biological activation and oxidation of water takes place at an inorganic cluster of the stoichiometry CaMn4 O5 , manganese oxide is one of the materials of choice in the quest for versatile, earth-abundant water splitting catalysts. To probe basic concepts and aid the design of artificial water-splitting molecular catalysts, a hierarchical modeling strategy was employed that explores clusters of increasing complexity, starting from the tetramanganese oxide cluster Mn4 O4 (+) as a molecular model system for catalyzed water activation. First-principles calculations in conjunction with IR spectroscopy provide fundamental insight into the interaction of water with Mn4 O4 (+) , one water molecule at a time. All of the investigated complexes Mn4 O4 (H2 O)n (+) (n=1-7) contain deprotonated water with a maximum of four dissociatively bound water molecules, and they exhibit structural fluxionality upon water adsorption, inducing dimensional and structural transformations of the cluster core.

12.
Phys Chem Chem Phys ; 16(48): 26578-83, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25146165

RESUMO

The reactions of ruthenium clusters, Rux(+) (x = 2-5), and ruthenium oxide clusters, RuxOy(+) (x = 2-5, y = 1-2), with water molecules have been investigated by gas phase ion trap mass spectrometry and first principle density functional calculations. The joint experimental and theoretical study reveals that the reactions of the ruthenium oxide clusters with water are considerably more efficient. This is assigned theoretically to the stronger binding of the water molecules to RuxOy(+) and, more importantly, to water activation leading to an efficient hydrogen transfer reaction from the water molecules to the oxygen atoms of the ruthenium oxide clusters. The theoretically predicted hydrogen shift reaction has been confirmed experimentally through (16)O/(18)O isotope exchange experiments. Calculated energy profiles for the reactions of selected oxide clusters with water illustrate that the oxygen isotope exchange relies on the facile transfer of hydrogen atoms via [1,3] shift reactions between the oxygen atoms of the complexes due to the relatively low barriers involved. These findings might open perspectives for the future realization of water oxidation driven by ruthenium oxide clusters.

13.
J Phys Chem A ; 118(37): 8572-82, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24915185

RESUMO

Temperature-dependent gas phase ion trap experiments performed under multicollision conditions reveal a strongly size-dependent reactivity of Pd(x)(+) (x = 2-7) in the reaction with molecular oxygen. Yet, a particular stability and resistance to further oxidation is generally observed for reaction products with two oxygen molecules, Pd(x)O4(+). Complementary first-principles density functional theory simulations elucidate the details of the size-dependent bonding of oxygen to the small palladium clusters and are able to assign the pronounced occurrence of Pd(x)O4(+) complexes to a dissociatively chemisorbed bridging oxygen atomic structure which impedes the chemisorption of further oxygen molecules. The molecular physisorption of additional O2 is only observed at cryogenic temperatures. Additional experiments and simulations employing preoxidized clusters Pd(x)O(+) (x = 2-8) and Pd(x)O2(+) (x = 4-7) confirm the formation of the two different oxygen species.

14.
Angew Chem Int Ed Engl ; 53(21): 5467-71, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24803209

RESUMO

Gas-phase ruthenium clusters Ru(n)(+) (n=2-6) are employed as model systems to discover the origin of the outstanding performance of supported sub-nanometer ruthenium particles in the catalytic CO methanation reaction with relevance to the hydrogen feed-gas purification for advanced fuel-cell applications. Using ion-trap mass spectrometry in conjunction with first-principles density functional theory calculations three fundamental properties of these clusters are identified which determine the selectivity and catalytic activity: high reactivity toward CO in contrast to inertness in the reaction with CO2; promotion of cooperatively enhanced H2 coadsorption and dissociation on pre-formed ruthenium carbonyl clusters, that is, no CO poisoning occurs; and the presence of Ru-atom sites with a low number of metal-metal bonds, which are particularly active for H2 coadsorption and activation. Furthermore, comprehensive theoretical investigations provide mechanistic insight into the CO methanation reaction and discover a reaction route involving the formation of a formyl-type intermediate.

15.
J Phys Chem A ; 118(37): 8356-9, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24571192

RESUMO

The gas-phase reaction of size-selected Ru(n)(+) (n = 4-6) clusters with CO in an ion trap yields only one specific ruthenium carbonyl complex for each cluster size, Ru4(CO)14(+), Ru5(CO)16(+), and Ru6(CO)18(+). First-principles density functional theory calculations reveal structures for these hitherto unknown carbonyl compounds that are in perfect agreement with the geometries predicted by Wade's electron counting rules. Furthermore, reactions with D2 show that for Ru4(+) and Ru6(+), CO molecules can be partially replaced by D2 to form hydrido carbonyl complexes while preserving the total ligand count corresponding to the Wade cluster sizes.

16.
Nano Lett ; 13(11): 5549-55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24164444

RESUMO

The interaction of ligand-free manganese oxide nanoclusters with water is investigated, aiming at uncovering phenomena which could aid the design of artificial water-splitting molecular catalysts. Gas phase measurements in an ion trap in conjunction with first-principles calculations provide new mechanistic insight into the water splitting process mediated by bi- and tetra-nuclear singly charged manganese oxide clusters, Mn2O2(+) and Mn4O4(+). In particular, a water-induced dimensionality change of Mn4O4(+) is predicted, entailing transformation from a two-dimensional ring-like ground state structure of the bare cluster to a cuboidal octa-hydroxy-complex for the hydrated one. It is further predicted that the water splitting process is facilitated by the cluster dimensionality crossover. The vibrational spectra calculated for species occurring along the predicted pathways of the reaction of Mn4O4(+) with water provide the impetus for future explorations, including vibrational spectroscopic experiments.


Assuntos
Compostos de Manganês/química , Óxidos/química , Oxigênio/química , Água/química , Catálise , Gases/química , Transição de Fase , Análise Espectral , Vibração
17.
Phys Chem Chem Phys ; 14(41): 14344-53, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23008835

RESUMO

The reactivity of mass-selected V(4)O(10)(-) cluster anions towards sulphur dioxide is investigated in an ion trap under multi-collision conditions. Gas phase reaction kinetics are studied as a function of temperature (T(R) = 150-275 K). The binding energy of SO(2) to V(4)O(10)(-) is obtained by analyzing the experimental low pressure rate constants, employing the Lindemann energy transfer model for association reactions in conjunction with statistical RRKM theory. In addition, infrared multiple photon dissociation spectroscopy is used in conjunction with density functional theory for the structural assignment of the [V(4)O(10)(-), SO(2)] complex, revealing a square pyramidal structure with the SO(2) molecule incorporated in the vanadium oxide framework. Energy profiles are calculated for the reaction between V(4)O(10)(-) and V(6)O(15)(-) with SO(2). Whereas the transition structures along the reaction pathway of V(4)O(10)(-) with SO(2) have energies below those of the separated partners, the reaction of V(6)O(15)(-) with SO(2) proceeds via a transition structure with energy higher than the educts. The role of cluster size and composition is investigated by studying the reaction kinetics of larger (V(6)O(15)(-) and V(8)O(20)(-)) and titanium doped (V(3)TiO(10)(-) and V(2)Ti(2)O(10)(-)) vanadium oxide clusters with SO(2). The observed cluster size and composition dependencies are discussed.

18.
Phys Chem Chem Phys ; 14(26): 9255-69, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22669249

RESUMO

Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.

19.
Phys Chem Chem Phys ; 14(26): 9350-8, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22293993

RESUMO

The effect of a single vanadium dopant atom on the reactivity of small gold clusters is studied in the gas phase. In particular we investigated carbon monoxide adsorption on vanadium doped gold clusters using a low-pressure collision cell. Employing this technique the reactivity of both neutral and cationic clusters was studied under the same experimental conditions. Analysis of the kinetic data as a function of the pressure in the reaction cell shows that the reaction mechanism is composed of a fast adsorption and a delayed dissociation reaction. It is demonstrated that the reactivity of positively charged Au(n)V(m)(+) (n = 8-30, m = 0-3) is greatly enhanced as compared to the corresponding neutral species and that dissociation rates decrease with decreasing temperatures. While the overall magnitude of the reactivity does not change upon doping with vanadium clusters, the size dependence is significantly affected. The neutral singly vanadium doped gold clusters show a sudden drop after size Au(13)V, followed by a smooth increase, in contrast to the extended odd-even staggering for bare gold clusters. This difference can be explained by changes in the electronic structure of the clusters, related to the partly filled 3d shell of the vanadium dopant atom.

20.
Phys Chem Chem Phys ; 14(26): 9364-70, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22344234

RESUMO

The gas phase reactions of carbon monoxide with small mass-selected clusters of palladium, Pd(x)(+) (x = 2-7), and their oxides, Pd(x)O(+) (x = 2-7) and Pd(x)O(2)(+) (x = 4-6), have been investigated in a radio frequency ion trap operated under multi-collision conditions. The bare palladium clusters were found to readily adsorb CO yielding a highly size dependent product pattern. Most interestingly, the reactions of the pre-oxidized palladium clusters with CO lead to very similar product distributions of Pd(x)(CO)(z)(+) complexes as in the case of the corresponding pure Pd(x)(+) clusters. Consequently, it has been concluded that the investigated palladium oxide clusters efficiently oxidize CO under formation of the bare clusters, which further adsorb CO molecules yielding the previously observed Pd(x)(CO)(z)(+) product complex distributions. This CO combustion reaction has been observed even at temperatures as low as 100 K. However, for Pd(2)O(+), Pd(6)O(+), Pd(6)O(2)(+), and Pd(7)O(+) a competing reaction channel yielding palladium oxide carbonyls Pd(x)O(CO)(z)(+) could be detected. The latter adsorption reaction may even hamper the CO combustion under certain reaction conditions and indicates enhanced activation barriers involved in the CO oxidation and/or the CO(2) elimination process on these clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA