Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Immunol ; 39(7): 688-701, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388879

RESUMO

While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.

2.
J Exp Med ; 216(9): 1986-1998, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31235509

RESUMO

IL-6 excess is central to the pathogenesis of multiple inflammatory conditions and is targeted in clinical practice by immunotherapy that blocks the IL-6 receptor encoded by IL6R We describe two patients with homozygous mutations in IL6R who presented with recurrent infections, abnormal acute-phase responses, elevated IgE, eczema, and eosinophilia. This study identifies a novel primary immunodeficiency, clarifying the contribution of IL-6 to the phenotype of patients with mutations in IL6ST, STAT3, and ZNF341, genes encoding different components of the IL-6 signaling pathway, and alerts us to the potential toxicity of drugs targeting the IL-6R.

3.
Am J Hum Genet ; 104(5): 985-989, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006513

RESUMO

We report a recurrent CNOT1 de novo missense mutation, GenBank: NM_016284.4; c.1603C>T (p.Arg535Cys), resulting in a syndrome of pancreatic agenesis and abnormal forebrain development in three individuals and a similar phenotype in mice. CNOT1 is a transcriptional repressor that has been suggested as being critical for maintaining embryonic stem cells in a pluripotent state. These findings suggest that CNOT1 plays a critical role in pancreatic and neurological development and describe a novel genetic syndrome of pancreatic agenesis and holoprosencephaly.

4.
Clin Immunol ; 203: 23-27, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30953794

RESUMO

Genetic studies are identifying an increasing number of monogenic causes of Common Variable Immunodeficiency (CVID). Pathogenic variants in the C-terminus of NFKB2 have been identified in the subset of CVID patients whose immunodeficiency is associated with ectodermal dysplasia and central adrenal insufficiency. We describe 2 unrelated CVID pedigrees with 4 cases of pathogenic stop gain variants (c.1903C > T) in the ankyrin repeat domain (ARD) of NF-κB2, leading to a premature truncation of the protein at p.Arg635Term (R635X). By immunophenotyping and functional ex vivo B- and T-cell experiments we characterized the variant by reduced class-switched memory B-cell counts and immature plasmablasts, unable to produce IgG and IgA. Features of a poor proliferative T-cell response and reduced expansion of CD4+CXCR5+ T cells was only observed in the two clinically affected index cases without any clear clinical correlate. In conclusion, pathogenic stop variants in the ARD of NFKB2 can cause 'infection-only' CVID with an abnormal B-cell phenotype and a variable clinical penetrance.

6.
J Allergy Clin Immunol ; 142(4): 1285-1296, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29477724

RESUMO

BACKGROUND: The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. OBJECTIVE: We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. METHODS: In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. RESULTS: Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. CONCLUSION: We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells.

8.
Prenat Diagn ; 38(1): 33-43, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096039

RESUMO

OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


Assuntos
Anormalidades Congênitas/genética , Doenças Genéticas Inatas/diagnóstico , Pais , Diagnóstico Pré-Natal/métodos , Sequenciamento Completo do Exoma , Feminino , Genes Recessivos , Humanos , Masculino , Gravidez
9.
Diabetes ; 66(8): 2316-2322, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28473463

RESUMO

Young-onset autoimmune diabetes associated with additional autoimmunity usually reflects a polygenic predisposition, but rare cases result from monogenic autoimmunity. Diagnosing monogenic autoimmunity is crucial for patients' prognosis and clinical management. We sought to identify novel genetic causes of autoimmunity presenting with neonatal diabetes (NDM) (diagnosis <6 months). We performed exome sequencing in a patient with NDM and autoimmune lymphoproliferative syndrome and his unrelated, unaffected parents and identified compound heterozygous null mutations in LRBA Biallelic LRBA mutations cause common variable immunodeficiency-8; however, NDM has not been confirmed in this disorder. We sequenced LRBA in 169 additional patients with diabetes diagnosed <1 year without mutations in the 24 known NDM genes. We identified recessive null mutations in 8 additional probands, of which, 3 had NDM (<6 months). Diabetes was the presenting feature in 6 of 9 probands. Six of 17 (35%) patients born to consanguineous parents and with additional early-onset autoimmunity had recessive LRBA mutations. LRBA testing should be considered in patients with diabetes diagnosed <12 months, particularly if they have additional autoimmunity or are born to consanguineous parents. A genetic diagnosis is important as it can enable personalized therapy with abatacept, a CTLA-4 mimetic, and inform genetic counseling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autoimunidade/genética , Diabetes Mellitus Tipo 1/genética , Genes Recessivos/genética , Mutação , Pré-Escolar , Consanguinidade , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
10.
J Am Soc Nephrol ; 28(8): 2529-2539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28373276

RESUMO

Hyperinsulinemic hypoglycemia (HI) and congenital polycystic kidney disease (PKD) are rare, genetically heterogeneous disorders. The co-occurrence of these disorders (HIPKD) in 17 children from 11 unrelated families suggested an unrecognized genetic disorder. Whole-genome linkage analysis in five informative families identified a single significant locus on chromosome 16p13.2 (logarithm of odds score 6.5). Sequencing of the coding regions of all linked genes failed to identify biallelic mutations. Instead, we found in all patients a promoter mutation (c.-167G>T) in the phosphomannomutase 2 gene (PMM2), either homozygous or in trans with PMM2 coding mutations. PMM2 encodes a key enzyme in N-glycosylation. Abnormal glycosylation has been associated with PKD, and we found that deglycosylation in cultured pancreatic ß cells altered insulin secretion. Recessive coding mutations in PMM2 cause congenital disorder of glycosylation type 1a (CDG1A), a devastating multisystem disorder with prominent neurologic involvement. Yet our patients did not exhibit the typical clinical or diagnostic features of CDG1A. In vitro, the PMM2 promoter mutation associated with decreased transcriptional activity in patient kidney cells and impaired binding of the transcription factor ZNF143. In silico analysis suggested an important role of ZNF143 for the formation of a chromatin loop including PMM2 We propose that the PMM2 promoter mutation alters tissue-specific chromatin loop formation, with consequent organ-specific deficiency of PMM2 leading to the restricted phenotype of HIPKD. Our findings extend the spectrum of genetic causes for both HI and PKD and provide insights into gene regulation and PMM2 pleiotropy.


Assuntos
Hiperinsulinismo Congênito/complicações , Hiperinsulinismo Congênito/genética , Mutação , Fosfotransferases (Fosfomutases)/genética , Doenças Renais Policísticas/complicações , Doenças Renais Policísticas/genética , Regiões Promotoras Genéticas/genética , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
11.
Clin Endocrinol (Oxf) ; 84(5): 715-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26708403

RESUMO

BACKGROUND: Mucosal neuromas, thickened corneal nerves and marfanoid body habitus are characteristic phenotypic features of multiple endocrine neoplasia type 2B (MEN2B) and often provide an early clue to the diagnosis of the syndrome. Rarely, patients present with typical physical features of MEN2B but without associated endocrinopathies (medullary thyroid carcinoma or pheochromocytoma) or a RET gene mutation; this clinical presentation is thought to represent a distinct condition termed 'pure mucosal neuroma syndrome'. METHODS: Exome sequencing was performed in two unrelated probands with mucosal neuromas, thickened corneal nerves and marfanoid body habitus, but no MEN2B-associated endocrinopathy or RET gene mutation. Sanger sequencing was performed to confirm mutations detected by exome sequencing and to test in family members and 3 additional unrelated index patients with mucosal neuromas or thickened corneal nerves. RESULTS: A heterozygous SOS1 gene frameshift mutation (c.3266dup or c.3248dup) was identified in each proband. Sanger sequencing showed that proband 1 inherited the c.3266dup mutation from his affected mother, while the c.3248dup mutation had arisen de novo in proband 2. Sanger sequencing also identified one further novel SOS1 mutation (c.3254dup) in one of the 3 additional index patients. CONCLUSION: Our results demonstrate the existence of pure mucosal neuroma syndrome as a clinical entity distinct from MEN2B that can now be diagnosed by genetic testing.


Assuntos
Mutação da Fase de Leitura , Predisposição Genética para Doença/genética , Mucosa Bucal/metabolismo , Neoplasias Bucais/genética , Neuroma/genética , Proteína SOS1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Diagnóstico Diferencial , Exoma/genética , Saúde da Família , Feminino , Heterozigoto , Humanos , Masculino , Mucosa Bucal/patologia , Neoplasias Bucais/diagnóstico , Neoplasia Endócrina Múltipla Tipo 2b/diagnóstico , Neoplasia Endócrina Múltipla Tipo 2b/genética , Neuroma/diagnóstico , Linhagem , Fenótipo , Análise de Sequência de DNA/métodos , Síndrome
13.
Eur J Hum Genet ; 23(12): 1744-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264437

RESUMO

Neonatal diabetes is a highly genetically heterogeneous disorder. There are over 20 distinct syndromic and non-syndromic forms, including dominant, recessive and X-linked subtypes. Biallelic truncating or mis-sense mutations in the DNA-binding domain of the RFX6 transcription factor cause an autosomal recessive, syndromic form of neonatal diabetes previously described as Mitchell-Riley syndrome. In all, eight cases have been reported, with the age at onset of diabetes in the first 2 weeks of life. Here we report two individuals born to double first cousins in whom intestinal atresias consistent with a diagnosis of Mitchell-Riley syndrome were diagnosed at birth, but in whom diabetes did not present until the ages of 3 and 6 years. Novel compound heterozygous RFX6 nonsense mutations (p.Arg726X/p.Arg866X) were identified at the 3' end of the gene. The later onset of diabetes in these patients may be due to incomplete inactivation of RFX6. Genetic testing for RFX6 mutations should be considered in patients presenting with intestinal atresias in the absence of neonatal diabetes.


Assuntos
Códon sem Sentido , Proteínas de Ligação a DNA/genética , Diabetes Mellitus/genética , Doenças da Vesícula Biliar/genética , Atresia Intestinal/genética , Fatores de Transcrição/genética , Adolescente , Alelos , Criança , Diabetes Mellitus/diagnóstico , Feminino , Doenças da Vesícula Biliar/diagnóstico , Heterozigoto , Humanos , Atresia Intestinal/diagnóstico , Masculino , Fatores de Transcrição de Fator Regulador X
14.
Lancet ; 386(9997): 957-63, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26231457

RESUMO

BACKGROUND: Traditional genetic testing focusses on analysis of one or a few genes according to clinical features; this approach is changing as improved sequencing methods enable simultaneous analysis of several genes. Neonatal diabetes is the presenting feature of many discrete clinical phenotypes defined by different genetic causes. Genetic subtype defines treatment, with improved glycaemic control on sulfonylurea treatment for most patients with potassium channel mutations. We investigated the effect of early, comprehensive testing of all known genetic causes of neonatal diabetes. METHODS: In this large, international, cohort study, we studied patients with neonatal diabetes diagnosed with diabetes before 6 months of age who were referred from 79 countries. We identified mutations by comprehensive genetic testing including Sanger sequencing, 6q24 methylation analysis, and targeted next-generation sequencing of all known neonatal diabetes genes. FINDINGS: Between January, 2000, and August, 2013, genetic testing was done in 1020 patients (571 boys, 449 girls). Mutations in the potassium channel genes were the most common cause (n=390) of neonatal diabetes, but were identified less frequently in consanguineous families (12% in consanguineous families vs 46% in non-consanguineous families; p<0·0001). Median duration of diabetes at the time of genetic testing decreased from more than 4 years before 2005 to less than 3 months after 2012. Earlier referral for genetic testing affected the clinical phenotype. In patients with genetically diagnosed Wolcott-Rallison syndrome, 23 (88%) of 26 patients tested within 3 months from diagnosis had isolated diabetes, compared with three (17%) of 18 patients referred later (>4 years; p<0·0001), in whom skeletal and liver involvement was common. Similarly, for patients with genetically diagnosed transient neonatal diabetes, the diabetes had remitted in only ten (10%) of 101 patients tested early (<3 months) compared with 60 (100%) of the 60 later referrals (p<0·0001). INTERPRETATION: Patients are now referred for genetic testing closer to their presentation with neonatal diabetes. Comprehensive testing of all causes identified causal mutations in more than 80% of cases. The genetic result predicts the best diabetes treatment and development of related features. This model represents a new framework for clinical care with genetic diagnosis preceding development of clinical features and guiding clinical management. FUNDING: Wellcome Trust and Diabetes UK.


Assuntos
Diabetes Mellitus/genética , Testes Genéticos/métodos , Doenças do Recém-Nascido/genética , Mutação/genética , Diabetes Mellitus/classificação , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
15.
Eur J Hum Genet ; 23(3): 401-4, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24961629

RESUMO

Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0-4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies.


Assuntos
Exoma , Genes Letais , Genes Recessivos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Feminino , Genótipo , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Gravidez , Diagnóstico Pré-Natal
16.
Diabetes ; 63(8): 2888-94, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24696446

RESUMO

The GATA family zinc finger transcription factors GATA4 and GATA6 are known to play important roles in the development of the pancreas. In mice, both Gata4 and Gata6 are required for pancreatic development. In humans, GATA6 haploinsufficiency can cause pancreatic agenesis and heart defects. Congenital heart defects also are common in patients with GATA4 mutations and deletions, but the role of GATA4 in the developing human pancreas is unproven. We report five patients with deletions (n = 4) or mutations of the GATA4 gene who have diabetes and a variable exocrine phenotype. In four cases, diabetes presented in the neonatal period (age at diagnosis 1-7 days). A de novo GATA4 missense mutation (p.N273K) was identified in a patient with complete absence of the pancreas confirmed at postmortem. This mutation affects a highly conserved residue located in the second zinc finger domain of the GATA4 protein. In vitro studies showed reduced DNA binding and transactivational activity of the mutant protein. We show that GATA4 mutations/deletions are a cause of neonatal or childhood-onset diabetes with or without exocrine insufficiency. These results confirm a role for GATA4 in normal development of the human pancreas.


Assuntos
Diabetes Mellitus/genética , Fator de Transcrição GATA4/genética , Predisposição Genética para Doença , Sequência de Aminoácidos , DNA/metabolismo , Fator de Transcrição GATA4/metabolismo , Humanos , Recém-Nascido , Dados de Sequência Molecular , Mutação , Pâncreas/anormalidades , Receptores Fc
17.
Cell Metab ; 19(1): 146-54, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24411943

RESUMO

Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development.


Assuntos
Diabetes Mellitus/genética , Proteínas de Homeodomínio/genética , Mutação/genética , Pâncreas/crescimento & desenvolvimento , Pâncreas/metabolismo , Fatores de Transcrição/genética , Adolescente , Sequência de Aminoácidos , Animais , Pré-Escolar , Diabetes Mellitus/patologia , Feminino , Proteínas de Homeodomínio/química , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Dados de Sequência Molecular , Fenótipo , Fatores de Transcrição/química
18.
J Med Genet ; 51(4): 264-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24459211

RESUMO

OBJECTIVE: Split-hand/foot malformation type 1 is an autosomal dominant condition with reduced penetrance and variable expression. We report three individuals from two families with split-hand/split-foot malformation (SHFM) in whom next generation sequencing was performed to investigate the cause of their phenotype. METHODS AND RESULTS: The first proband has a de novo balanced translocation t(2;7)(p25.1;q22) identified by karyotyping. Whole genome sequencing showed that the chromosome 7 breakpoint is situated within the SHFM1 locus on chromosome 7q21.3. This separates the DYNC1I1 exons recently identified as limb enhancers in mouse studies from their target genes, DLX5 and DLX6. In the second family, X-linked recessive inheritance was suspected and exome sequencing was performed to search for a mutation in the affected proband and his uncle. No coding mutation was found within the SHFM2 locus at Xq26 or elsewhere in the exome, but a 106 kb deletion within the SHFM1 locus was detected through copy number analysis. Genome sequencing of the deletion breakpoints showed that the DLX5 and DLX6 genes are disomic but the putative DYNC1I1 exon 15 and 17 enhancers are deleted. CONCLUSIONS: Exome sequencing identified a 106 kb deletion that narrows the SHFM1 critical region from 0.9 to 0.1 Mb and confirms a key role of DYNC1I1 exonic enhancers in normal limb formation in humans.


Assuntos
Dineínas do Citoplasma/genética , Éxons/genética , Rearranjo Gênico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Fatores de Transcrição/genética , Animais , Aberrações Cromossômicas , Elementos Facilitadores Genéticos/genética , Família , Feminino , Regulação da Expressão Gênica , Loci Gênicos/genética , Humanos , Masculino , Camundongos , Mutação/genética , Penetrância
19.
Acta Diabetol ; 51(2): 325-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23828613

RESUMO

Changes in the levels of specific microRNAs (miRNAs) can reduce glucose-stimulated insulin secretion and increase beta-cell apoptosis, two causes of islet dysfunction and progression to type 2 diabetes. Studies have shown that single nucleotide polymorphisms (SNPs) within miRNA genes can affect their expression. We sought to determine whether miRNAs, with a known role in beta-cell function, possess SNPs within the pre-miRNA structure which can affect their expression. Using published literature and dbSNP, we aimed to identify miRNAs with a role in beta-cell function that also possess SNPs within the region encoding its pre-miRNA. Following transfection of plasmids, encoding the pre-miRNA and each allele of the SNP, miRNA expression was measured. Two rare SNPs located within the pre-miRNA structure of two miRNA genes important to beta-cell function (miR-34a and miR-96) were identified. Transfection of INS-1 and MIN6 cells with plasmids encoding pre-miR-34a and the minor allele of rs72631823 resulted in significantly (p < 0.05) higher miR-34a expression, compared to cells transfected with plasmids encoding the corresponding major allele. Similarly, higher levels were also observed upon transfection of HeLa cells. Transfection of MIN6 cells with plasmids encoding pre-miR-96 and each allele of rs41274239 resulted in no significant differences in miR-96 expression. A rare SNP in pre-miR-34a is associated with increased levels of mature miR-34a. Given that small changes in miR-34a levels have been shown to cause increased levels of beta-cell apoptosis this finding may be of interest to studies looking at determining the effect of rare variants on type 2 diabetes susceptibility.


Assuntos
Diabetes Mellitus Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Alelos , Diabetes Mellitus Tipo 2/metabolismo , Variação Genética , Células HeLa , Humanos , Polimorfismo de Nucleotídeo Único , RNA/química , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
20.
Nat Genet ; 45(8): 947-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23770608

RESUMO

DNA polymerase δ, whose catalytic subunit is encoded by POLD1, is responsible for lagging-strand DNA synthesis during DNA replication. It carries out this synthesis with high fidelity owing to its intrinsic 3'- to 5'-exonuclease activity, which confers proofreading ability. Missense mutations affecting the exonuclease domain of POLD1 have recently been shown to predispose to colorectal and endometrial cancers. Here we report a recurring heterozygous single-codon deletion in POLD1 affecting the polymerase active site that abolishes DNA polymerase activity but only mildly impairs 3'- to 5'-exonuclease activity. This mutation causes a distinct multisystem disorder that includes subcutaneous lipodystrophy, deafness, mandibular hypoplasia and hypogonadism in males. This discovery suggests that perturbing the function of the ubiquitously expressed POLD1 polymerase has unexpectedly tissue-specific effects in humans and argues for an important role for POLD1 function in adipose tissue homeostasis.


Assuntos
Anormalidades Múltiplas/genética , Domínio Catalítico/genética , DNA Polimerase III/genética , Lipodistrofia/genética , Fases de Leitura , Deleção de Sequência , Anormalidades Múltiplas/diagnóstico , Animais , Linhagem Celular , DNA Polimerase III/química , Ativação Enzimática/genética , Facies , Fibrose , Humanos , Lipodistrofia/complicações , Imagem por Ressonância Magnética , Masculino , Camundongos , Modelos Moleculares , Fenótipo , Conformação Proteica , Gordura Subcutânea Abdominal/patologia , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA