Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844065

RESUMO

The freshwater pearl mussel (Margaritifera margaritifera) is a highly host-specific parasite, with an obligate parasitic stage on salmonid fish. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta f. trutta and Salmo trutta f. fario) are the only hosts in their European distribution. Some M. margaritifera populations exclusively infest either Atlantic salmon or brown trout, while others infest both hosts with one salmonid species typically being the principal host and the other a less suitable host. Glochidial abundance, prevalence and growth are often used as parameters to measure host suitability, with the most suitable host species displaying the highest parameters. However, it is not known if the degree of host specialisation will negatively influence host fitness (virulence) among different host species. In this study we examined the hypothesis that glochidial infestation would result in differential virulence in two salmonid host species and that lower virulence would be observed on the most suitable host. Atlantic salmon and brown trout were infested with glochidia from two M. margaritifera populations that use Atlantic salmon as their principal host, and the difference in host mortality among infested and control (sham infested) fish was examined. Higher mortality was observed in infested brown trout (the less suitable host) groups, compared to the other test groups. Genetic assignment was used to identify offspring from individual mother mussels. We found that glochidia from individual mothers can infest both the salmonid hosts; however, some mothers displayed a bias towards either salmon or trout. We believe that the differences in host-dependent virulence and the host bias displayed by individual mothers were a result of genotype × genotype interactions between the glochidia and their hosts, indicating that there is an underlying genetic component for this parasite-host interaction.

2.
Sci Rep ; 9(1): 10409, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320723

RESUMO

Parasites often depend on their hosts for long distance transport, and genetic population structure can be strongly affected by host specificity and dispersal. Freshwater pearl mussel (Margaritifera margaritifera) populations have previously been found to naturally infest either primarily Atlantic salmon ('salmon-mussel') or exclusively brown trout ('trout-mussel') across a wide geographic range. Here, we experimentally test whether this intraspecific variation in natural infestation can be explained by host specificity in freshwater pearl mussel. Our experiments show that when both host species were exposed to larvae from salmon- and trout-mussel respectively, salmon-mussel larvae almost never infested brown trout and vice versa. This suggests that host specificity can explain variation in natural infestation among the studied freshwater pearl mussel populations. Host specificity provides a link to the species' variable population genetic structure, as mussel populations limited to Atlantic salmon, the host with stronger dispersal, show higher genetic diversity and weaker differentiation than populations limited to brown trout as host.


Assuntos
Bivalves/genética , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Parasita/genética , Animais , Doenças dos Peixes/genética , Água Doce , Estruturas Genéticas/genética , Genética Populacional/métodos , Salmo salar , Alimentos Marinhos , Truta/genética
3.
Ecol Evol ; 8(16): 8126-8134, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30250689

RESUMO

Multiple paternity is an important characteristic of the genetic mating system and common across a wide range of taxa. Multiple paternity can increase within-population genotypic diversity, allowing selection to act on a wider spectre of genotypes, and potentially increasing effective population size. While the genetic mating system has been studied in many species with active mating behavior, little is known about multiple paternity in sessile species releasing gametes into the water. In freshwater mussels, males release sperm into the water, while eggs are retained and fertilized inside the female (spermcast mating). Mature parasitic glochidia are released into the water and attach to the gills of fish where they are encapsulated until settling in the bottom substrate. We used 15 microsatellite markers to detect multiple paternity in a wild population of the freshwater pearl mussel (Margaritifera margaritifera). We found multiple paternity in all clutches for which more than two offspring were genotyped, and numbers of sires were extremely high. Thirty-two sires had contributed to the largest clutch (43 offspring sampled). This study provides the first evidence of multiple paternity in the freshwater pearl mussel, a species that has experienced dramatic declines across Europe. Previous studies on other species of freshwater mussels have detected much lower numbers of sires. Multiple paternity in freshwater pearl mussels may be central for maintaining genetic variability in small and fragmented populations and for their potential to recover after habitat restoration and may also be important in the evolutionary arms race with their fish host with a much shorter generation time.

4.
Ecol Evol ; 8(8): 4065-4073, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721280

RESUMO

Interactions between birds and fish are often overlooked in aquatic ecosystems. We studied the influence of Atlantic salmon and brown trout on the breeding population size and reproductive output of the white-throated dipper in a Norwegian river. Acidic precipitation led to the extinction of salmon, but salmon recolonized after liming was initiated in 1991. We compared the dipper population size and reproductive output before (1978-1992) and after (1993-2014) salmon recolonization. Despite a rapid and substantial increase in juvenile salmon, the breeding dipper population size and reproductive output were not influenced by juvenile salmon, trout, or total salmonid density. This might be due to different feeding strategies in salmonids and dippers, where salmonids are mainly feeding on drift, while the dipper is a benthic feeder. The correlation between the size of the dipper population upstream and downstream of a salmonid migratory barrier was similar before and after recolonization, indicating that the downstream territories were not less attractive after the recolonization of salmon. Upstream dipper breeding success rates declined before the recolonization event and increased after, indicating improved water quality due to liming, and increasing invertebrate prey abundances and biodiversity. Surprisingly, upstream the migratory barrier, juvenile trout had a weak positive effect on the dipper population size, indicating that dippers may prey upon small trout. It is possible that wider downstream reaches might have higher abundances of alternative food, rending juvenile trout unimportant as prey. Abiotic factors such as winter temperatures and acidic precipitation with subsequent liming, potentially mediated by prey abundance, seem to play the most important role in the life history of the dipper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...