Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Allergy ; 49(10): 1342-1351, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31379025

RESUMO

BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totalling 8273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analysed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P = 4.3 × 10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P < 5 × 10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P = 4.9 × 10-7 ), 14q22 (rs7493885 near NIN; P = 2.9 × 10-6 ) and 2p22 (rs232542 near CYP1B1; P = 4.1 × 10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSIONS AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms.

3.
Hum Mutat ; 40(7): 996-1004, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31018026

RESUMO

Homozygosity mapping is a well-known technique to identify runs of homozygous variants that are likely to harbor genes responsible for autosomal recessive disease, but a comparable method for autosomal dominant traits has been lacking. We developed an approach to map dominant disease genes based on heterozygosity frequencies of sequence variants in the immediate vicinity of a dominant trait. We demonstrate through theoretical analysis that DNA variants surrounding an inherited dominant disease variant tend to have increased heterozygosity compared with variants elsewhere in the genome. We confirm existence of this phenomenon in sequence data with known dominant pathogenic variants obtained on family members and in unrelated population controls. A computer-based approach to estimating empirical significance levels associated with our test statistics shows genome-wide p-values smaller than 0.05 for many but not all of the individuals carrying a pathogenic variant.

4.
Sci Rep ; 9(1): 3656, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842494

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. To disentangle etiological relationships between these conditions and identify genetically-determined metabolites involved in NAFLD processes, we mapped 1H nuclear magnetic resonance (NMR) metabolomic and disease-related phenotypes in a mouse F2 cross derived from strains showing resistance (BALB/c) and increased susceptibility (129S6) to these diseases. Quantitative trait locus (QTL) analysis based on single nucleotide polymorphism (SNP) genotypes identified diet responsive QTLs in F2 mice fed control or high fat diet (HFD). In HFD fed F2 mice we mapped on chromosome 18 a QTL regulating liver micro- and macrovesicular steatosis and inflammation, independently from glucose intolerance and adiposity, which was linked to chromosome 4. Linkage analysis of liver metabolomic profiling data identified a QTL for octopamine, which co-localised with the QTL for liver histopathology in the cross. Functional relationship between these two QTLs was validated in vivo in mice chronically treated with octopamine, which exhibited reduction in liver histopathology and metabolic benefits, underlining its role as a mechanistic biomarker of fatty liver with potential therapeutic applications.

5.
Brain ; 142(4): 1009-1023, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30859180

RESUMO

We report a composite extreme phenotype design using distribution of white matter hyperintensities and brain infarcts in a population-based cohort of older persons for gene-mapping of cerebral small vessel disease. We demonstrate its application in the 3C-Dijon whole exome sequencing (WES) study (n = 1924, nWESextremes = 512), with both single variant and gene-based association tests. We used other population-based cohort studies participating in the CHARGE consortium for replication, using whole exome sequencing (nWES = 2,868, nWESextremes = 956) and genome-wide genotypes (nGW = 9924, nGWextremes = 3308). We restricted our study to candidate genes known to harbour mutations for Mendelian small vessel disease: NOTCH3, HTRA1, COL4A1, COL4A2 and TREX1. We identified significant associations of a common intronic variant in HTRA1, rs2293871 using single variant association testing (Pdiscovery = 8.21 × 10-5, Preplication = 5.25 × 10-3, Pcombined = 4.72 × 10-5) and of NOTCH3 using gene-based tests (Pdiscovery = 1.61 × 10-2, Preplication = 3.99 × 10-2, Pcombined = 5.31 × 10-3). Follow-up analysis identified significant association of rs2293871 with small vessel ischaemic stroke, and two blood expression quantitative trait loci of HTRA1 in linkage disequilibrium. Additionally, we identified two participants in the 3C-Dijon cohort (0.4%) carrying heterozygote genotypes at known pathogenic variants for familial small vessel disease within NOTCH3 and HTRA1. In conclusion, our proof-of-concept study provides strong evidence that using a novel composite MRI-derived phenotype for extremes of small vessel disease can facilitate the identification of genetic variants underlying small vessel disease, both common variants and those with rare and low frequency. The findings demonstrate shared mechanisms and a continuum between genes underlying Mendelian small vessel disease and those contributing to the common, multifactorial form of the disease.

6.
Nat Commun ; 10(1): 1209, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872577

RESUMO

Sparse profiling of CpG methylation in blood by microarrays has identified epigenetic links to common diseases. Here we apply methylC-capture sequencing (MCC-Seq) in a clinical population of ~200 adipose tissue and matched blood samples (Ntotal~400), providing high-resolution methylation profiling (>1.3 M CpGs) at regulatory elements. We link methylation to cardiometabolic risk through associations to circulating plasma lipid levels and identify lipid-associated CpGs with unique localization patterns in regulatory elements. We show distinct features of tissue-specific versus tissue-independent lipid-linked regulatory regions by contrasting with parallel assessments in ~800 independent adipose tissue and blood samples from the general population. We follow-up on adipose-specific regulatory regions under (1) genetic and (2) epigenetic (environmental) regulation via integrational studies. Overall, the comprehensive sequencing of regulatory element methylomes reveals a rich landscape of functional variants linked genetically as well as epigenetically to plasma lipid traits.


Assuntos
Doenças Cardiovasculares/genética , Ilhas de CpG/genética , Epigênese Genética , Doenças Metabólicas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Tecido Adiposo/metabolismo , Adulto , Idoso , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Metilação de DNA , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lipídeos/sangue , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
7.
J Alzheimers Dis ; 68(3): 1243-1255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909216

RESUMO

Early-onset Alzheimer's disease (EOAD) accounts for 5-10% of all AD cases, with a heritability ranging between 92% to 100%. With the exception of rare mutations in APP, PSEN1, and PSEN2 genes causing autosomal dominant EOAD, little is known about the genetic factors underlying most of the EOAD cases. In this study, we hypothesized that copy number variations (CNVs) in microRNA (miR) genes could contribute to risk for EOAD. miRs are short non-coding RNAs previously implicated in the regulation of AD-related genes and phenotypes. Using whole exome sequencing, we screened a series of 546 EOAD patients negative for autosomal dominant EOAD mutations and 597 controls. We identified 86 CNVs in miR genes of which 31 were exclusive to EOAD cases, including a duplication of the MIR138-2 locus. In functional studies in human cultured cells, we could demonstrate that miR-138 overexpression leads to higher Aß production as well as tau phosphorylation, both implicated in AD pathophysiology. These changes were mediated in part by GSK-3ß and FERMT2, a potential risk factor for AD. Additional disease-related genes were also prone to miR-138 regulation including APP and BACE1. This study suggests that increased gene dosage of MIR138-2 could contribute to risk for EOAD by regulating different biological pathways implicated in amyloid and tau metabolism. Additional studies are now required to better understand the role of miR-CNVs in EOAD.

8.
Lipids Health Dis ; 18(1): 38, 2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30711004

RESUMO

BACKGROUND: Lipoproteins are major players in the development and progression of atherosclerotic plaques leading to coronary stenosis and myocardial infarction. Epidemiological, genetic and experimental observations have implicated the association of sphingolipids and intermediates of sphingolipid synthesis in atherosclerosis. We aimed to investigate relationships between quantitative changes in serum sphingolipids, the regulation of the metabolism of lipoproteins (LDL, HDL), and endophenotypes of coronary artery disease (CAD). METHODS: We carried out untargeted liquid chromatography - mass spectrometry (UPLC-MS) lipidomics of serum samples of subjects belonging to a cross-sectional study and recruited on the basis of absence or presence of angiographically-defined CAD, and extensively characterized for clinical and biochemical phenotypes. RESULTS: Among the 2998 spectral features detected in the serum samples, 1328 metabolic features were significantly correlated with at least one of the clinical or biochemical phenotypes measured in the cohort. We found evidence of significant associations between 34 metabolite signals, corresponding to a set of sphingomyelins, and serum HDL cholesterol. Many of these metabolite associations were also observed with serum LDL and total cholesterol levels but not as much with serum triglycerides. CONCLUSION: Among patients with CAD, sphingolipids in the form of sphingomyelins are directly correlated with serum levels of lipoproteins and total cholesterol. Results from this study support the fundamental role of sphingolipids in modulating lipid serum levels, highlighting the importance to identify novel targets in the sphingolipid metabolic pathway for anti-atherogenic therapies.


Assuntos
Colesterol/sangue , Esfingomielinas/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença da Artéria Coronariana/sangue , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Masculino , Espectrometria de Massas , Metabolômica/instrumentação , Metabolômica/métodos , Pessoa de Meia-Idade , Adulto Jovem
9.
PLoS One ; 13(11): e0206554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383853

RESUMO

BACKGROUND AND PURPOSE: Polymorphisms in coagulation genes have been associated with early-onset ischemic stroke. Here we pursue an a priori hypothesis that genetic variation in the endothelial-based receptors of the thrombomodulin-protein C system (THBD and PROCR) may similarly be associated with early-onset ischemic stroke. We explored this hypothesis utilizing a multi-stage design of discovery and replication. METHODS: Discovery was performed in the Genetics-of-Early-Onset Stroke (GEOS) Study, a biracial population-based case-control study of ischemic stroke among men and women aged 15-49 including 829 cases of first ischemic stroke (42.2% African-American) and 850 age-comparable stroke-free controls (38.1% African-American). Twenty-four single-nucleotide-polymorphisms (SNPs) in THBD and 22 SNPs in PROCR were evaluated. Following LD pruning (r2≥0.8), we advanced uncorrelated SNPs forward for association analyses. Associated SNPs were evaluated for replication in an early-onset ischemic stroke population (onset-age<60 years) consisting of 3676 cases and 21118 non-stroke controls from 6 case-control studies. Lastly, we determined if the replicated SNPs also associated with older-onset ischemic stroke in the METASTROKE data-base. RESULTS: Among GEOS Caucasians, PROCR rs9574, which was in strong LD with 8 other SNPs, and one additional independent SNP rs2069951, were significantly associated with ischemic stroke (rs9574, OR = 1.33, p = 0.003; rs2069951, OR = 1.80, p = 0.006) using an additive-model adjusting for age, gender and population-structure. Adjusting for risk factors did not change the associations; however, associations were strengthened among those without risk factors. PROCR rs9574 also associated with early-onset ischemic stroke in the replication sample (OR = 1.08, p = 0.015), but not older-onset stroke. There were no PROCR associations in African-Americans, nor were there any THBD associations in either ethnicity. CONCLUSION: PROCR polymorphisms are associated with early-onset ischemic stroke in Caucasians.

10.
Thorax ; 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282721

RESUMO

BACKGROUND: A positional cloning study of bronchial hyper-responsiveness (BHR) at the 17p11 locus in the French Epidemiological study on the Genetics and Environment of Asthma (EGEA) families showed significant interaction between early-life environmental tobacco smoke (ETS) exposure and genetic variants located in DNAH9. This gene encodes the heavy chain subunit of axonemal dynein, which is involved with ATP in the motile cilia function.Our goal was to identify genetic variants at other genes interacting with ETS in BHR by investigating all genes belonging to the 'ATP-binding' and 'ATPase activity' pathways which include DNAH9, are targets of cigarette smoke and play a crucial role in the airway inflammation. METHODS: Family-based interaction tests between ETS-exposed and unexposed BHR siblings were conducted in 388 EGEA families. Twenty single-nucleotide polymorphisms (SNP) showing interaction signals (p≤5.10-3) were tested in the 253 Saguenay-Lac-Saint-Jean (SLSJ) families. RESULTS: One of these SNPs was significantly replicated for interaction with ETS in SLSJ families (p=0.003). Another SNP reached the significance threshold after correction for multiple testing in the combined analysis of the two samples (p=10-5). Results were confirmed using both a robust log-linear test and a gene-based interaction test. CONCLUSION: The SNPs showing interaction with ETS belong to the ATP8A1 and ABCA1 genes, which play a role in the maintenance of asymmetry and homeostasis of lung membrane lipids.

11.
Eur J Hum Genet ; 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206357

RESUMO

The Saguenay-Lac-Saint-Jean (SLSJ) region is located in northeastern Quebec and is known for its unique demographic history and founder effect. As founder populations are enriched with population-specific variants, we characterized the variants distribution in SLSJ and compared it with four European populations (Finnish, Sweden, United Kingdom and France), of which the Finnish population is another founder population. Targeted sequencing of the coding and non-coding immune regulatory regions of the SLSJ asthma familial cohort and the four European populations were performed. Rare and low-frequency coding and non-coding regulatory variants identified in the SLSJ population were then investigated for variant- and gene-level associations with asthma and allergy-related traits (eosinophil percentage, immunoglobulin (Ig) E levels and lung function). Our data showed that (1) rare or deleterious variants were not enriched in the two founder populations as compared with the three non-founder European populations; (2) a larger proportion of founder population-specific variants occurred with higher frequencies; and (3) low-frequency variants appeared to be more deleterious. Furthermore, a rare variant, rs1386931, located in the 3'-UTR of CXCR6 and intron of FYCO1 was found to be associated with eosinophil percentage. Gene-based analyses identified NRP2, MRPL44 and SERPINE2 to be associated with various asthma and allergy-related traits. Our study demonstrated the usefulness of using a founder population to identify new genes associated with asthma and allergy-related traits; thus better understand the genes and pathways implicated in pathophysiology.

12.
Mol Psychiatry ; 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108311

RESUMO

The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- and APOE based risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes: IGHG3 (p = 9.8 × 10-7), an immunoglobulin gene whose antibodies interact with ß-amyloid, a long non-coding RNA AC099552.4 (p = 1.2 × 10-7), and a zinc-finger protein ZNF655 (gene-based p = 5.0 × 10-6). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.

13.
Eur Neuropsychopharmacol ; 28(10): 1103-1114, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30104163

RESUMO

The TTC12-ANKK1-DRD2 gene-cluster has been implicated in adult smoking. Here, we investigated the contribution of individual genes in the TTC12-ANKK1-DRD2 cluster in smoking and their association with smoking-associated reward processing in adolescence. A meta-analysis of TTC12-ANKK1-DRD2 variants and self-reported smoking behaviours was performed in four European adolescent cohorts (N = 14,084). The minor G-allele of rs2236709, mapping TTC12, was associated with self-reported smoking (p = 5.0 × 10-4) and higher plasma cotinine levels (p = 7.0 × 10-5). This risk allele was linked to an increased ventral-striatal blood-oxygen level-dependent (BOLD) response during reward anticipation (n = 1,263) and with higher DRD2 gene expression in the striatum (p = 0.013), but not with TTC12 or ANKK gene expression. These data suggest a role for the TTC12-ANKK1-DRD2 gene-cluster in adolescent smoking behaviours, provide evidence for the involvement of DRD2 in the early stages of addiction and support the notion that genetically-driven inter-individual differences in dopaminergic transmission mediate reward sensitivity and risk to smoking.

14.
Oncotarget ; 9(45): 27682-27697, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963229

RESUMO

Despite major advances, it is estimated that a large part of melanoma predisposing genes remains to be discovered. Animal models of spontaneous diseases are valuable tools and experimental crosses can be used to identify and fine-map new susceptibility loci associated with melanoma. We performed a Genome-Wide Association Study (GWAS) of melanoma occurrence and progression (clinical ulceration and presence of metastasis) in a porcine model of spontaneous melanoma, the MeLiM pig. Five loci on chromosomes 2, 5, 7, 8 and 16 showed genome-wide significant associations (p < 5 × 10-6) with either one of these phenotypes. Suggestive associations (p < 5 × 10-5) were also found at 16 additional loci. Moreover, comparison of the porcine results to those reported by human melanoma GWAS indicated shared association signals notably at CDKAL1 and TERT loci but also nearby CCND1, FTO, PLA2G6 and TMEM38B-RAD23B loci. Extensive search of the literature revealed a potential key role of genes at the identified porcine loci in tumor invasion (DST, PLEKHA5, CBY1, LIMK2 and ETV5) and immune response modulation (ETV5, HERC3 and DICER1) of the progression phenotypes. These biological processes are consistent with the clinico-pathological features of MeLiM tumors and can open new routes for future melanoma research in humans.

15.
Nat Commun ; 9(1): 2427, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930244

RESUMO

GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD). The majority of disease associations are known to be driven by regulatory variants. To identify the putative causative genes that are perturbed by these variants, we generate a large transcriptome data set (nine disease-relevant cell types) and identify 23,650 cis-eQTL. We show that these are determined by ∼9720 regulatory modules, of which ∼3000 operate in multiple tissues and ∼970 on multiple genes. We identify regulatory modules that drive the disease association for 63 of the 200 risk loci, and show that these are enriched in multigenic modules. Based on these analyses, we resequence 45 of the corresponding 100 candidate genes in 6600 Crohn disease (CD) cases and 5500 controls, and show with burden tests that they include likely causative genes. Our analyses indicate that ≥10-fold larger sample sizes will be required to demonstrate the causality of individual genes using this approach.

16.
Environ Health Perspect ; 126(6): 067005, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29906262

RESUMO

BACKGROUND: Aging is related to an increased risk of morbidity and mortality and is affected by environmental factors. Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with adverse health outcomes; but the association of such exposure with DNA methylation aging, a novel aging marker, is unclear. OBJECTIVES: Our aim was to investigate the association of PAH exposure with methylation aging. METHODS: We trained and validated a methylation age predictor suitable for Chinese populations using whole blood methylation data in 989 Chinese and 160 Caucasians. We defined two aging indicators: δage, as methylation age minus chronological age; and aging rate, the ratio of methylation to chronological age. The association of PAH exposure with aging indicators was evaluated using linear regressions in three panels of healthy Chinese participants (N=539, among the aforementioned 989 Chinese participants) whose exposure levels were assessed by 10 urinary monohydroxy-PAH metabolites. RESULTS: We developed a methylation age predictor providing accurate predictions in both Chinese individuals and Caucasian persons (R=0.94-0.96, RMSE=3.8-4.3). Among the 10 urinary metabolites that we measured, 1-hydroxypyrene and 9-hydroxyphenanthrene were associated with methylation aging independently of other OH-PAHs and risk factors; 1-unit increase in 1-hydroxypyrene was associated with a 0.53-y increase in Δage [95% confidence interval (CI): 0.18, 0.88; false discovery rate (FDR) FDR=0.004] and 1.17% increase in aging rate (95% CI: 0.36, 1.98; FDR=0.02), whereas for 9-hydroxyphenanthrene, the increase was 0.54-y for Δage (95% CI: 0.17, 0.91; FDR=0.004), and 1.15% for aging rate (95% CI: 0.31, 1.99; FDR=0.02). The association direction was consistent across the three Chinese panels with the association magnitude correlating with the panels' exposure levels; the association was validated by methylation data of purified leukocytes. Several cytosine-phosphoguanines, including those located on FHL2 and ELOVL2, were found associated with both aging indicators and monohydroxy-PAH levels. CONCLUSIONS: We developed a methylation age predictor specific for Chinese populations but also accurate for Caucasian populations. Our findings suggest that exposure to PAHs may be associated with an adverse impact on human aging and epigenetic alterations in Chinese populations. https://doi.org/10.1289/EHP2773.

17.
Oncotarget ; 9(38): 25166-25180, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29861861

RESUMO

Despite efforts for extensive molecular characterization of cancer patients, such as the international cancer genome consortium (ICGC) and the cancer genome atlas (TCGA), the heterogeneous nature of cancer and our limited knowledge of the contextual function of proteins have complicated the identification of targetable genes. Here, we present Aberration Hub Analysis for Cancer (AbHAC) as a novel integrative approach to pinpoint aberration hubs, i.e. individual proteins that interact extensively with genes that show aberrant mutation or expression. Our analysis of the breast cancer data of the TCGA and the renal cancer data from the ICGC shows that aberration hubs are involved in relevant cancer pathways, including factors promoting cell cycle and DNA replication in basal-like breast tumors, and Src kinase and VEGF signaling in renal carcinoma. Moreover, our analysis uncovers novel functionally relevant and actionable targets, among which we have experimentally validated abnormal splicing of spleen tyrosine kinase as a key factor for cell proliferation in renal cancer. Thus, AbHAC provides an effective strategy to uncover novel disease factors that are only identifiable by examining mutational and expression data in the context of biological networks.

18.
Eur J Gastroenterol Hepatol ; 30(8): 828-837, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29787419

RESUMO

BACKGROUND: Approximately 5% of patients with celiac disease (CeD) do not respond to a gluten-free diet and progress to refractory celiac disease (RCD), a severe progression that is characterized by infiltration of intraepithelial T lymphocytes. Patients with RCD type II (RCDII) show clonal expansions of intraepithelial T lymphocytes that result in a poor prognosis and a high mortality rate through development of aggressive enteropathy-associated T-cell lymphoma. It is not known whether genetic variations play a role in severe progression of CeD to RCDII. PATIENTS AND METHODS: We performed the first genome-wide association study to identify the causal genes for RCDII and the molecular pathways perturbed in RCDII. The genome-wide association study was performed in 38 Dutch patients with RCDII, and the 15 independent top-associated single nucleotide polymorphism (SNP) variants (P<5×10) were replicated in 56 independent French and Dutch patients with RCDII. RESULTS: After replication, SNP rs2041570 on chromosome 7 was significantly associated with progression to RCDII (P=2.37×10, odds ratio=2.36) but not with CeD susceptibility. SNP rs2041570 risk allele A was associated with lower levels of FAM188B expression in blood and small intestinal biopsies. Stratification of RCDII biopsies based on rs2041570 genotype showed differential expression of innate immune and antibacterial genes that are expressed in Paneth cells. CONCLUSION: We have identified a novel SNP associated with the severe progression of CeD to RCDII. Our data suggest that genetic susceptibility to CeD might be distinct from the progression to RCDII and suggest a role for Paneth cells in RCDII progression.


Assuntos
Doença Celíaca/genética , Cromossomos Humanos Par 7/genética , Polimorfismo de Nucleotídeo Único , Biópsia , Estudos de Casos e Controles , Doença Celíaca/diagnóstico , Doença Celíaca/dietoterapia , Doença Celíaca/imunologia , Dieta Livre de Glúten , Progressão da Doença , Feminino , França , Microbioma Gastrointestinal/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Imunidade Inata/genética , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Masculino , Proteínas de Membrana/genética , Análise Multivariada , Países Baixos , Razão de Chances , Celulas de Paneth/imunologia , Celulas de Paneth/microbiologia , Celulas de Paneth/patologia , Fenótipo , Fatores de Risco , Índice de Gravidade de Doença , Falha de Tratamento
19.
Cell Rep ; 23(6): 1639-1650, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742422

RESUMO

Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC.

20.
Sci Rep ; 8(1): 3313, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463811

RESUMO

In clear-cell renal cell carcinoma (ccRCC), loss of von Hippel-Lindau (VHL) tumour suppressor gene and reduced oxygen tension promote stabilisation of hypoxia-inducible factor (HIF) family of transcription factors, which promote changes in the expression of genes that contribute to oncogenesis. Multiple studies have demonstrated significant perturbations in DNA methylation in ccRCC via largely unclear mechanisms that modify the transcriptional output of tumour cells. Here, we show that the methylation status of the CpG dinucleotide within the consensus hypoxia-responsive element (HRE) markedly influences the binding of HIF and that the loss of VHL results in significant alterations in the DNA methylome. Surprisingly, hypoxia, which likewise promotes HIF stabilisation and activation, has relatively few effects on global DNA methylation. Gene expression analysis of ccRCC patient samples highlighted expression of a group of genes whose transcription correlated with methylation changes, including hypoxic responsive genes such as VEGF and TGF. These results suggest that the loss of VHL alters DNA methylation profile across the genome, commonly associated with and contributing to ccRCC progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA