Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 16(3): 3573-3581, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35156797

RESUMO

The f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCo2P2. In its bulk, Ce is passive and behaves tetravalently. However, because of symmetry breaking and an effective magnetic field caused by an uncompensated ferromagnetic Co layer, the Ce 4f states become partially occupied and spin-polarized near the surface. The momentum-resolved photoemission measurements indicate a strong admixture of the Ce 4f states to the itinerant bands near the Fermi level including surface states that are split by exchange interaction with Co. The temperature-dependent measurements reveal strong changes of the 4f intensity at the Fermi level in accordance with the Kondo scenario. Our findings show how rich and diverse the f-driven properties can be at the surface of materials without f-physics in the bulk.

2.
Nanoscale ; 10(48): 22810-22817, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30488051

RESUMO

Embedding foreign atoms in graphene and interchanging the underlying substrate are proved to be efficient methods for manipulating the properties of graphene. Combining ARPES experiments with DFT calculations we show that boron-doped graphene (B-graphene) grown on a Co(0001) substrate by chemical vapor deposition (CVD) becomes hole doped and its Fermi surface near the K-point reveals strongly spin-polarized states. The latter stems from the spin-polarized mini Dirac cone that is an intrinsic two-dimensional feature of the graphene/Co(0001) interface and is formed by a mixture of C 2pz and Co 3d states. Since the CVD method allows the achievement of up to 20 at% of incorporated B atoms, this provides a certain flexibility for handling the spin-polarized properties of the system. We also show that the bonding of the B-graphene layer to the Co(0001) substrate can be released by intercalation of Li into the interface. This allows the exploration of the doping effect in detail. Finally, our ARPES data indicate a gap opening in the Dirac cone as a result of the highly unbalanced boron concentrations in the two graphene sublattices.

3.
Nanoscale ; 10(25): 12123-12132, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29915820

RESUMO

Recrystallization of bulk materials is a well-known phenomenon, which is widely used in commercial manufacturing. However, for low-dimensional materials like graphene, this process still remains an unresolved puzzle. Thus, the understanding of the underlying mechanisms and the required conditions for recrystallization in low dimensions is essential for the elaboration of routes towards the inexpensive and reliable production of high-quality nanomaterials. Here, we unveil the details of the efficient recrystallization of one-atom-thick pure and boron-doped polycrystalline graphene layers on a Co(0001) surface. By applying photoemission and electron diffraction, we show how more than 90% of the initially misoriented graphene grains can be reconstructed into a well-oriented and single-crystalline layer. The obtained recrystallized graphene/Co interface exhibits high structural quality with a pronounced sublattice asymmetry, which is important for achieving an unbalanced sublattice doping of graphene. By exploring the kinetics of recrystallization for native and B-doped graphene on Co, we were able to estimate the activation energy and propose a mechanism of this process.

4.
ACS Nano ; 11(6): 6336-6345, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28494148

RESUMO

Regardless of the widely accepted opinion that there is no Raman signal from single-layer graphene when it is strongly bonded to a metal surface, we present Raman spectra of a graphene monolayer on Ni(111) and Co(0001) substrates. The high binding energy of carbon to these surfaces allows formation of lattice-matched (1 × 1) structures where graphene is significantly stretched. This is reflected in a record-breaking shift of the Raman G band by more than 100 cm-1 relative to the case of freestanding graphene. Using electron diffraction and photoemission spectroscopy, we explore the aforementioned systems together with polycrystalline graphene on Co and analyze possible intercalation of oxygen at ambient conditions. The results obtained are fully supported by Raman spectroscopy. Performing a theoretical investigation of the phonon dispersions of freestanding graphene and stretched graphene on the strongly interacting Co surface, we explain the main features of the Raman spectra. Our results create a reliable platform for application of Raman spectroscopy in diagnostics of chemisorbed graphene and related materials.

5.
Nano Lett ; 17(2): 811-820, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28032768

RESUMO

Finding ways to create and control the spin-dependent properties of two-dimensional electron states (2DESs) is a major challenge for the elaboration of novel spin-based devices. Spin-orbit and exchange-magnetic interactions (SOI and EMI) are two fundamental mechanisms that enable access to the tunability of spin-dependent properties of carriers. The silicon surface of HoRh2Si2 appears to be a unique model system, where concurrent SOI and EMI can be visualized and controlled by varying the temperature. The beauty and simplicity of this system lie in the 4f moments, which act as a multiple tuning instrument on the 2DESs, as the 4f projections parallel and perpendicular to the surface order at essentially different temperatures. Here we show that the SOI locks the spins of the 2DESs exclusively in the surface plane when the 4f moments are disordered: the Rashba-Bychkov effect. When the temperature is gradually lowered and the system experiences magnetic order, the rising EMI progressively competes with the SOI leading to a fundamental change in the spin-dependent properties of the 2DESs. The spins rotate and reorient toward the out-of-plane Ho 4f moments. Our findings show that the direction of the spins and the spin-splitting of the two-dimensional electrons at the surface can be manipulated in a controlled way by using only one parameter: the temperature.

6.
Nano Lett ; 16(7): 4535-43, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27248659

RESUMO

The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.

7.
Sci Rep ; 6: 25548, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151364

RESUMO

The recently synthesized series of Pt(II) complexes containing cyclometallating (phenylpyridine or benzoquinoline) and N-heterocyclic carbene ligands possess intriguing structures, topologies, and light emitting properties. Here, we report curious physicochemical interactions between in situ PVD-grown films of a typical representative of the aforementioned Pt(II) complex compounds and Li, Na, K and Cs atoms. Based on a combination of detailed core-level photoelectron spectroscopy and quantum-chemical calculations at the density functional theory level, we found that the deposition of alkali atoms onto the molecular film leads to unusual redistribution of electron density: essential modification of nitrogen sites, reduction of the coordination Pt(II) centre to Pt(0) and decrease of electron density on the bromine atoms. A possible explanation for this is formation of a supramolecular system "Pt complex-alkali metal ion"; the latter is supported by restoration of the system to the initial state upon subsequent oxygen treatment. The discovered properties highlight a considerable potential of the Pt(II) complexes for a variety of biomedical, sensing, chemical, and electronic applications.

8.
ACS Nano ; 9(7): 7314-22, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26121999

RESUMO

Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.

9.
Sci Rep ; 5: 8710, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25736576

RESUMO

The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide.


Assuntos
Proteínas de Bactérias/química , Cobre/química , Ferro/química , Glicoproteínas de Membrana/química , Modelos Químicos , Oxirredução , Espectroscopia Fotoeletrônica , Ligação Proteica , Propriedades de Superfície , Vácuo , Espectroscopia por Absorção de Raios X
10.
Nano Lett ; 15(4): 2396-401, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25734657

RESUMO

With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons. Here, we show that graphene grown under appropriate conditions on Co(0001) demonstrates perfect structural properties and simultaneously exhibits highly spin-polarized charge carriers. The latter was conclusively proven by observation of a single-spin Dirac cone near the Fermi level. This was accomplished experimentally using spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using the spin degree of freedom.

11.
ACS Nano ; 9(1): 320-6, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25560087

RESUMO

Oxygen reduction reaction (ORR) plays a key role in lithium-air batteries (LABs) that attract great attention thanks to their high theoretical specific energy several times exceeding that of lithium-ion batteries. Because of their high surface area, high electric conductivity, and low specific weight, various carbons are often materials of choice for applications as the LAB cathode. Unfortunately, the possibility of practical application of such batteries is still under question as the sustainable operation of LABs with carbon cathodes is not demonstrated yet and the cyclability is quite poor, which is usually associated with oxygen reduced species side reactions. However, the mechanisms of carbon reactivity toward these species are still unclear. Here, we report a direct in situ X-ray photoelectron spectroscopy study of oxygen reduction by lithiated graphene and graphene-based materials. Although lithium peroxide (Li2O2) and lithium oxide (Li2O) reactions with carbon are thermodynamically favorable, neither of them was found to react even at elevated temperatures. As lithium superoxide is not stable at room temperature, potassium superoxide (KO2) prepared in situ was used instead to test the reactivity of graphene with superoxide species. In contrast to Li2O2 and Li2O, KO2 was demonstrated to be strongly reactive.

12.
Nano Lett ; 14(9): 4982-8, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25136909

RESUMO

Many propositions have been already put forth for the practical use of N-graphene in various devices, such as batteries, sensors, ultracapacitors, and next generation electronics. However, the chemistry of nitrogen imperfections in this material still remains an enigma. Here we demonstrate a method to handle N-impurities in graphene, which allows efficient conversion of pyridinic N to graphitic N and therefore precise tuning of the charge carrier concentration. By applying photoemission spectroscopy and density functional calculations, we show that the electron doping effect of graphitic N is strongly suppressed by pyridinic N. As the latter is converted into the graphitic configuration, the efficiency of doping rises up to half of electron charge per N atom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...