Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Cancer Res ; 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472890

RESUMO

Lung cancer is the leading cause of cancer death globally. An improved risk stratification strategy can increase efficiency of low-dose computed tomography (LDCT) screening. Here we assessed whether individual's genetic background has clinical utility for risk stratification in the context of LDCT screening. Based on 13,119 lung cancer patients and 10,008 controls with European ancestry in the International Lung Cancer Consortium, we constructed a polygenic risk score (PRS) via 10-fold cross-validation with regularized penalized regression. The performance of risk model integrating PRS, including calibration and ability to discriminate, was assessed using UK biobank data (N=335,931). Absolute risk was estimated based on age-specific lung cancer incidence and all-cause mortality as competing risk. To evaluate its potential clinical utility, the PRS distribution was simulated in the National Lung Screening Trial, N=50,772 participants). The lung cancer odds ratio (ORs) for individuals at the top decile of the PRS distribution versus those at bottom 10% was 2.39 (95%CI=1.92-3.00, P=1.80x10-14) in the validation set (trend p-value of 5.26 x 10-20). The OR per standard deviation of PRS increase was 1.26 (95%CI=1.20-1.32, P=9.69x10-23) for overall lung cancer risk in the validation set. When considering absolute risks, individuals at different PRS deciles showed differential trajectories of 5-year and cumulative absolute risk. The age reaching the LDCT screening recommendation threshold can vary by 4 to 8 years, depending on the individual's genetic background, smoking status and family history. Collectively, these results suggest that Individual's genetic background may inform the optimal lung cancer LDCT screening strategy.

2.
Expert Opin Drug Metab Toxicol ; : 1-17, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33322962

RESUMO

Introduction: Smoking remains a worldwide epidemic, and despite an increase in public acceptance of the harms of tobacco use, it remains the leading cause of preventable death. It is estimated that up to 70% of all smokers express a desire to quit, but only 3-5% of them are successful. Areas covered: The goal of this review was to evaluate the current status of smoking cessation treatments and the feasibility of implementing personalized-medicine approaches to these pharmacotherapies. We evaluated the genetics associated with higher levels of nicotine addiction and follow with an analysis of the genetic variants that affect the nicotine metabolic ratio (NMR) and the FDA approved treatments for smoking cessation. We also highlighted the gaps in the process of translating current laboratory understanding into clinical practice, and the benefits of personalized treatment approaches for a successful smoking cessation strategy. Expert opinion: Evidence supports the use of tailored therapies to ensure that the most efficient treatments are utilized in an individual's smoking cessation efforts. An understanding of the genetic effects on the efficacy of individualized smoking cessation pharmacotherapies is key to smoking cessation, ideally utilizing a polygenetic risk score that considers all genetic variation.

3.
Front Med ; 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32889700

RESUMO

Although genome-wide association studies have identified more than eighty genetic variants associated with non-small cell lung cancer (NSCLC) risk, biological mechanisms of these variants remain largely unknown. By integrating a large-scale genotype data of 15 581 lung adenocarcinoma (AD) cases, 8350 squamous cell carcinoma (SqCC) cases, and 27 355 controls, as well as multiple transcriptome and epigenomic databases, we conducted histology-specific meta-analyses and functional annotations of both reported and novel susceptibility variants. We identified 3064 credible risk variants for NSCLC, which were overrepresented in enhancer-like and promoter-like histone modification peaks as well as DNase I hypersensitive sites. Transcription factor enrichment analysis revealed that USF1 was AD-specific while CREB1 was SqCC-specific. Functional annotation and gene-based analysis implicated 894 target genes, including 274 specifics for AD and 123 for SqCC, which were overrepresented in somatic driver genes (ER = 1.95, P = 0.005). Pathway enrichment analysis and Gene-Set Enrichment Analysis revealed that AD genes were primarily involved in immune-related pathways, while SqCC genes were homologous recombination deficiency related. Our results illustrate the molecular basis of both well-studied and new susceptibility loci of NSCLC, providing not only novel insights into the genetic heterogeneity between AD and SqCC but also a set of plausible gene targets for post-GWAS functional experiments.

4.
Chem Res Toxicol ; 33(11): 2854-2862, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32993298

RESUMO

The UDP-glycosyltransferase (UGT) family of enzymes are important in the metabolism of a variety of exogenous substances including polycyclic aromatic hydrocarbons (PAHs), a potent class of environmental carcinogens. As compared to the majority of UGT enzymes, which utilize UDP-glucuronic acid as a cosubstrate, UGT3A2 utilizes alternative cosubstrates (UDP-glucose and UDP-xylose). UGT3A2 is expressed in aerodigestive tract tissues and was highly active against multiple PAHs with both cosubstrates. The goal of the present study was to assess the functional effects of UGT3A2 missense variants (MAF ≥ 0.005) on PAH metabolism and the utilization of cosubstrates. The glycosylation activity (Vmax/Km) of all variants against simple PAHs using both cosubstrates was significantly (P < 0.05) decreased by 42-100% when compared to wild-type UGT3A2. When utilizing UDP-glucose, the variant isoforms exhibited up to a 362-fold decrease in Vmax/Km when compared to wild-type UGT3A2, with a 3.1- to 14-fold decrease for D140N, A344T, and S435Y, a 24- and 43-fold decrease for A436T and R445C, respectively, and a 147- and 362-fold decrease for Y474C and Y74N, respectively. When utilizing UDP-xylose, the variants exhibited up to a 4.0-fold decrease in Vmax/Km when compared to wild-type UGT3A2; Y74N did not exhibit activity, and Y474C did not reach saturation (Km > 4000 µM). Additionally, both wild-type and variant UGT3A2 exhibited a significant (P < 0.05) difference in their utilization of UDP-glucose vs UDP-xylose as cosubstrates using 1-OH-pyrene as substrate. These data suggest that UGT3A2 missense variants decrease the detoxification of PAHs, potentially resulting in altered individual risk for PAH-related cancers.

5.
Genet Epidemiol ; 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924180

RESUMO

Clinical trial results have recently demonstrated that inhibiting inflammation by targeting the interleukin-1ß pathway can offer a significant reduction in lung cancer incidence and mortality, highlighting a pressing and unmet need to understand the benefits of inflammation-focused lung cancer therapies at the genetic level. While numerous genome-wide association studies (GWAS) have explored the genetic etiology of lung cancer, there remains a large gap between the type of information that may be gleaned from an association study and the depth of understanding necessary to explain and drive translational findings. Thus, in this study we jointly model and integrate extensive multiomics data sources, utilizing a total of 40 genome-wide functional annotations that augment previously published results from the International Lung Cancer Consortium (ILCCO) GWAS, to prioritize and characterize single nucleotide polymorphisms (SNPs) that increase risk of squamous cell lung cancer through the inflammatory and immune responses. Our work bridges the gap between correlative analysis and translational follow-up research, refining GWAS association measures in an interpretable and systematic manner. In particular, reanalysis of the ILCCO data highlights the impact of highly associated SNPs from nuclear factor-κB signaling pathway genes as well as major histocompatibility complex mediated variation in immune responses. One consequence of prioritizing likely functional SNPs is the pruning of variants that might be selected for follow-up work by over an order of magnitude, from potentially tens of thousands to hundreds. The strategies we introduce provide informative and interpretable approaches for incorporating extensive genome-wide annotation data in analysis of genetic association studies.

6.
Int J Cancer ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914876

RESUMO

At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung cancer risk, which may reflect reverse causality and confounding due to smoking behavior. We used two-sample univariable and multivariable Mendelian randomization (MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and histological subtypes based on an aggregated genome-wide association studies (GWASs) analysis of lung cancer in 29 266 cases and 56 450 controls. We observed a positive causal effect for high BMI on occurrence of small-cell lung cancer (odds ratio (OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06, P = 2.70 × 10-4 ). After adjustment of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct causal effect on small cell lung cancer (ORMVMR = 1.28, 95% CI = 1.06-1.55, PMVMR = .011), and an inverse effect on lung adenocarcinoma (ORMVMR = 0.86, 95% CI = 0.77-0.96, PMVMR = .008) were observed. A weak increased risk of lung squamous cell carcinoma was observed for higher BMI in univariable Mendelian randomization (UVMR) analysis (ORUVMR = 1.19, 95% CI = 1.01-1.40, PUVMR = .036), but this effect disappeared after adjustment of smoking (ORMVMR = 1.02, 95% CI = 0.90-1.16, PMVMR = .746). These results highlight the histology-specific impact of BMI on lung carcinogenesis and imply mediator role of smoking behaviors in the association between BMI and lung cancer.

7.
Br J Cancer ; 123(9): 1456-1463, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32830199

RESUMO

BACKGROUND: Alcohol is a well-established risk factor for head and neck cancer (HNC). This study aims to explore the effect of alcohol intensity and duration, as joint continuous exposures, on HNC risk. METHODS: Data from 26 case-control studies in the INHANCE Consortium were used, including never and current drinkers who drunk ≤10 drinks/day for ≤54 years (24234 controls, 4085 oral cavity, 3359 oropharyngeal, 983 hypopharyngeal and 3340 laryngeal cancers). The dose-response relationship between the risk and the joint exposure to drinking intensity and duration was investigated through bivariate regression spline models, adjusting for potential confounders, including tobacco smoking. RESULTS: For all subsites, cancer risk steeply increased with increasing drinks/day, with no appreciable threshold effect at lower intensities. For each intensity level, the risk of oral cavity, hypopharyngeal and laryngeal cancers did not vary according to years of drinking, suggesting no effect of duration. For oropharyngeal cancer, the risk increased with durations up to 28 years, flattening thereafter. The risk peaked at the higher levels of intensity and duration for all subsites (odds ratio = 7.95 for oral cavity, 12.86 for oropharynx, 24.96 for hypopharynx and 6.60 for larynx). CONCLUSIONS: Present results further encourage the reduction of alcohol intensity to mitigate HNC risk.

8.
Breast Cancer Res Treat ; 183(3): 705-716, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32715442

RESUMO

PURPOSE: To examine associations between the UGT2B17 gene deletion and exemestane metabolites, and commonly reported side effects (fatigue, hot flashes, and joint pain) among postmenopausal women participating in the MAP.3 chemoprevention trial. METHODS: The analytical samples for the UGT2B17 analysis comprised 1752 women on exemestane and 1721 women on placebo; the exemestane metabolite analysis included 1360 women on exemestane with one-year serum samples. Both the UGT2B17 gene deletion and metabolites were measured in blood. The metabolites were conceptualized as a ratio (17-DHE-Gluc:17-DHE). Symptoms were assessed using the CTCAE v4.0 at approximately 1-year intervals. Log-binomial regression was used to examine the associations between UGT2B17 deletion, exemestane metabolites and each side effect at 1 and up to 5-year follow-up, adjusting for potential confounders. RESULTS: Among individuals on exemestane with the UGT2B17 gene deletion (i.e., lower detoxification), a higher risk of severe fatigue (RR = 2.59 95% CI: 1.14-5.89) was observed at up to 5-year follow-up. Among individuals on placebo, those with the UGT2B17 gene deletion had a higher risk of any fatigue (RR = 1.39, 95% CI: 1.02-1.89) at year 1. A lower metabolite ratio (poor detoxification) was associated with a higher risk of any fatigue, hot flashes and joint pain at year 1 (fatigue: RR = 1.89, 95% CI: 1.16-3.09; hot flashes: RR = 1.77, 95% CI: 1.40-2.24; joint pain: RR = 2.05, 95% CI: 1.35-3.12); similar associations were observed at 5-year follow-up. CONCLUSION: Variation in the metabolism of exemestane through the UGT2B17-mediated pathway is associated with subsequent risk of commonly reported symptoms in MAP.3.

9.
PLoS One ; 15(6): e0225044, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32603335

RESUMO

Cellular stress response mechanisms normally function to enhance survival and allow for cells to return to homeostasis following an adverse event. Cancer cells often co-opt these same mechanisms as a means to evade apoptosis and mitigate a state of constant cellular stress. Activating transcription factor 5 (ATF5) is upregulated under diverse stress conditions and is overexpressed in a variety of cancers. It was demonstrated ATF5 is a survival factor in transformed, but not normal cells. However, the regulation of ATF5 is not fully understood. The purpose of the present study was to investigate miRNA regulation at the 3' untranslated region (UTR) of ATF5, with the goal of demonstrating a reversal of the upregulation of ATF5 induced under diverse cellular stress in cancer cells. A multifactorial approach using in silico analysis was employed to identify miRNAs 433-3p, 520b-3p, and 129-5p as potential regulators of ATF5, based on their predicted binding sites over the span of the ATF5 3' UTR. Luciferase reporter assay data validated all three miRNA candidates by demonstrating direct binding to the target ATF5 3'. However, functional studies revealed miR-520b-3p as the sole candidate able to reverse the upregulation of ATF5 protein under diverse cellular stress. Additionally, miR-520b-3p levels were inversely related to ATF5 mRNA under endoplasmic reticulum stress and amino acid deprivation. This is the first evidence that regulation at the 3' UTR is involved in modulating ATF5 levels under cellular stress and suggests an important role for miRNA-520b-3p in the regulation of ATF5.


Assuntos
Fatores Ativadores da Transcrição/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Células HeLa , Humanos , Células MCF-7 , Estresse Fisiológico/genética
10.
Nat Commun ; 11(1): 2220, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393777

RESUMO

Few germline mutations are known to affect lung cancer risk. We performed analyses of rare variants from 39,146 individuals of European ancestry and investigated gene expression levels in 7,773 samples. We find a large-effect association with an ATM L2307F (rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio = 8.82, P = 1.18 × 10-15) and replication (adjusted OR = 2.93, P = 2.22 × 10-3) that is more pronounced in females (adjusted OR = 6.81 and 3.19 and for discovery and replication). We observe an excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in discovery (adjusted OR = 2.61, P = 7.98 × 10-22) and replication datasets (adjusted OR = 1.55, P = 0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk.


Assuntos
Adenocarcinoma/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias Pulmonares/genética , Idoso , Alelos , Bases de Dados Genéticas , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Predisposição Genética para Doença , Técnicas de Genotipagem , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Judeus/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Razão de Chances , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , RNA-Seq , Fatores de Risco
11.
PLoS One ; 15(5): e0233111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32453764

RESUMO

Bangladesh exhibits the second highest rate of smokeless tobacco (SLT) product usage in the world, and this has been associated with the high upper aerodigestive tract cancer incidence in this country. The goal of the present study was to examine the levels of the highly carcinogenic tobacco-specific nitrosamines (TSNAs) in Bangladeshi SLT products and compare these levels to that observed in SLT brands from southeast Asia and the USA. The levels of TSNAs and nicotine were determined by LC-MS/MS in twenty-eight SLT brands and several tobacco additives from Bangladesh, as well as several SLT brands from India, Pakistan and the USA. The levels of N-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-nitrosoanatabine (NAT) and N-nitrosoanabasine (NAB) in Bangladeshi SLT brands ranged from 1.1-59, 0.15-34, 0.79-45, and 0.037-13 µg/g SLT powder, respectively. The mean levels of the highly carcinogenic TSNAs (NNN+NNK) were 7.4-, 2.4-, and 63-fold higher in Bangladeshi SLT products as compared to SLT brands from the USA, India and Pakistan, respectively; these trends were also observed for NAT and NAB. Similar mean levels of nicotine were observed in the Bangladeshi brands (31 mg/g powder) versus brands from the USA (25 mg/g powder) and India (20 mg/g powder); they were 3-fold higher than brands from Pakistan (10 mg/g powder). Gul SLT brands exhibited the highest pH and the highest levels of unprotonated nicotine. The high levels of TSNAs in Bangladeshi SLT brands may be an important factor contributing to the high rates of upper aerodigestive tract cancer in Bangladesh.


Assuntos
Nitrosaminas/análise , Tabaco sem Fumaça/análise , Tabaco/química , Bangladesh , Cromatografia Líquida , Nicotina/análise , Espectrometria de Massas em Tandem , Produtos do Tabaco/análise
12.
Cancer Epidemiol Biomarkers Prev ; 29(7): 1423-1429, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32277007

RESUMO

BACKGROUND: A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated. METHODS: We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project. RESULTS: We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 × 10-6). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 × 10-3). CONCLUSIONS: Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. IMPACT: Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.

13.
Pharmacogenomics J ; 20(4): 586-594, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31959879

RESUMO

Nicotine is the major pharmacologically active substance in tobacco. Several studies have examined genotypes related to nicotine metabolism, but few studies have been performed in the Mexican population. The objective was to identify associations between gene variants in metabolizing enzymes and the urinary levels of nicotine metabolites among Mexican smokers. The levels of nicotine and its metabolites were determined in the urine of 88 young smokers from Mexico, and 167 variants in 24 genes associated with nicotine metabolism were genotyped by next-generation sequencing (NGS). Trans-3'-hydroxy-cotinine (3HC) and 4-hydroxy-4-(3-pyridyl)-butanoic acid were the most abundant metabolites (35 and 17%, respectively). CYP2A6*12 was associated with 3HC (p = 0.014). The rs145014075 was associated with creatinine-adjusted levels of nicotine (p = 0.035), while the rs12471326 (UGT1A9) was associated to cotinine-N-glucuronide (p = 0.030). CYP2A6 and UGT1A9 variants are associated to nicotine metabolism. 4HPBA metabolite was an abundant urinary metabolite in young Mexican smokers.

14.
Nat Commun ; 11(1): 27, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911640

RESUMO

Impaired lung function is often caused by cigarette smoking, making it challenging to disentangle its role in lung cancer susceptibility. Investigation of the shared genetic basis of these phenotypes in the UK Biobank and International Lung Cancer Consortium (29,266 cases, 56,450 controls) shows that lung cancer is genetically correlated with reduced forced expiratory volume in one second (FEV1: rg = 0.098, p = 2.3 × 10-8) and the ratio of FEV1 to forced vital capacity (FEV1/FVC: rg = 0.137, p = 2.0 × 10-12). Mendelian randomization analyses demonstrate that reduced FEV1 increases squamous cell carcinoma risk (odds ratio (OR) = 1.51, 95% confidence intervals: 1.21-1.88), while reduced FEV1/FVC increases the risk of adenocarcinoma (OR = 1.17, 1.01-1.35) and lung cancer in never smokers (OR = 1.56, 1.05-2.30). These findings support a causal role of pulmonary impairment in lung cancer etiology. Integrative analyses reveal that pulmonary function instruments, including 73 novel variants, influence lung tissue gene expression and implicate immune-related pathways in mediating the observed effects on lung carcinogenesis.


Assuntos
Neoplasias Pulmonares/genética , Pulmão/fisiopatologia , Adulto , Idoso , Feminino , Volume Expiratório Forçado , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/fisiopatologia , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Testes de Função Respiratória , Capacidade Vital
15.
J Pharmacol Exp Ther ; 372(1): 21-29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628204

RESUMO

During tobacco and e-cigarette use, nicotine is mainly metabolized in the human liver by cytochrome P450 2A6 (CYP2A6). Given that a slower CYP2A6 metabolism has been associated with less vulnerability to develop nicotine dependence, the current studies sought to validate a novel CYP2A6 inhibitor, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), for its effects on intravenous nicotine self-administration. Male and female mice were trained to self-administer nicotine across daily sessions. Once stable responding was achieved, DLCI-1 or vehicle control was administered prior to nicotine sessions. We found that the lower 25 mg/kg and moderate 50 mg/kg doses of DLCI-1 induced a significant decrease in nicotine intake for both males and females. DLCI-1 was further shown to be more effective than a moderate 1 mg/kg dose of bupropion on reducing nicotine intake and did not exert the adverse behavioral effects found with a high 75 mg/kg dose of bupropion. Although mice treated with DLCI-1 self-administered significantly less nicotine, similar nicotine-mediated behavioral effects on locomotion were observed. Together, along with the analysis of nicotine metabolites during self-administration, these findings support the contention that blocking hepatic nicotine metabolism would allow for similar activation of nicotinic acetylcholine receptors at lower nicotine doses. Moreover, these effects of DLCI-1 were specific to nicotine self-administration, as DLCI-1 did not result in any behavioral changes during food self-administration. Taken together, these studies validate DLCI-1 as a novel compound to decrease nicotine consumption, which may thereby promote tobacco and nicotine product cessation. SIGNIFICANCE STATEMENT: Current pharmacological approaches for nicotine and tobacco cessation have only been able to achieve limited efficaciousness in promoting long-term abstinence. In this work, we characterize the effects of a novel compound, (5-(4-ethylpyridin-3-yl)thiophen-2-yl)methanamine (DLCI-1), which inhibits the main enzyme that metabolizes nicotine, and we report a significant decrease in intravenous nicotine self-administration in male and female mice, supporting the potential of DLCI-1 as a novel tobacco cessation pharmacotherapeutic.


Assuntos
Citocromo P-450 CYP2A6/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Agentes de Cessação do Hábito de Fumar/uso terapêutico , Tiofenos/uso terapêutico , Tabagismo/tratamento farmacológico , Animais , Citocromo P-450 CYP2A6/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacologia , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nicotina/metabolismo , Agentes de Cessação do Hábito de Fumar/administração & dosagem , Agentes de Cessação do Hábito de Fumar/efeitos adversos , Agentes de Cessação do Hábito de Fumar/farmacologia , Tiofenos/administração & dosagem , Tiofenos/efeitos adversos , Tiofenos/farmacologia
16.
Int J Cancer ; 146(10): 2855-2864, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31577861

RESUMO

Genome-wide association studies (GWAS) have identified 45 susceptibility loci associated with lung cancer. Only less than SNPs, small insertions and deletions (INDELs) are the second most abundant genetic polymorphisms in the human genome. INDELs are highly associated with multiple human diseases, including lung cancer. However, limited studies with large-scale samples have been available to systematically evaluate the effects of INDELs on lung cancer risk. Here, we performed a large-scale meta-analysis to evaluate INDELs and their risk for lung cancer in 23,202 cases and 19,048 controls. Functional annotations were performed to further explore the potential function of lung cancer risk INDELs. Conditional analysis was used to clarify the relationship between INDELs and SNPs. Four new risk loci were identified in genome-wide INDEL analysis (1p13.2: rs5777156, Insertion, OR = 0.92, p = 9.10 × 10-8 ; 4q28.2: rs58404727, Deletion, OR = 1.19, p = 5.25 × 10-7 ; 12p13.31: rs71450133, Deletion, OR = 1.09, p = 8.83 × 10-7 ; and 14q22.3: rs34057993, Deletion, OR = 0.90, p = 7.64 × 10-8 ). The eQTL analysis and functional annotation suggested that INDELs might affect lung cancer susceptibility by regulating the expression of target genes. After conducting conditional analysis on potential causal SNPs, the INDELs in the new loci were still nominally significant. Our findings indicate that INDELs could be potentially functional genetic variants for lung cancer risk. Further functional experiments are needed to better understand INDEL mechanisms in carcinogenesis.


Assuntos
Predisposição Genética para Doença/genética , Mutação INDEL/genética , Neoplasias Pulmonares/genética , Estudo de Associação Genômica Ampla , Humanos
17.
Int J Cancer ; 146(7): 1862-1878, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696517

RESUMO

We have recently completed the largest GWAS on lung cancer including 29,266 cases and 56,450 controls of European descent. The goal of our study has been to integrate the complete GWAS results with a large-scale expression quantitative trait loci (eQTL) mapping study in human lung tissues (n = 1,038) to identify candidate causal genes for lung cancer. We performed transcriptome-wide association study (TWAS) for lung cancer overall, by histology (adenocarcinoma, squamous cell carcinoma and small cell lung cancer) and smoking subgroups (never- and ever-smokers). We performed replication analysis using lung data from the Genotype-Tissue Expression (GTEx) project. DNA damage assays were performed in human lung fibroblasts for selected TWAS genes. As expected, the main TWAS signal for all histological subtypes and ever-smokers was on chromosome 15q25. The gene most strongly associated with lung cancer at this locus using the TWAS approach was IREB2 (pTWAS = 1.09E-99), where lower predicted expression increased lung cancer risk. A new lung adenocarcinoma susceptibility locus was revealed on 9p13.3 and associated with higher predicted expression of AQP3 (pTWAS = 3.72E-6). Among the 45 previously described lung cancer GWAS loci, we mapped candidate target gene for 17 of them. The association AQP3-adenocarcinoma on 9p13.3 was replicated using GTEx (pTWAS = 6.55E-5). Consistent with the effect of risk alleles on gene expression levels, IREB2 knockdown and AQP3 overproduction promote endogenous DNA damage. These findings indicate genes whose expression in lung tissue directly influences lung cancer risk.


Assuntos
Biomarcadores Tumorais , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Transcriptoma , Linhagem Celular Tumoral , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
18.
Am J Epidemiol ; 189(4): 330-342, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31781743

RESUMO

Head and neck cancer (HNC) risk prediction models based on risk factor profiles have not yet been developed. We took advantage of the large database of the International Head and Neck Cancer Epidemiology (INHANCE) Consortium, including 14 US studies from 1981-2010, to develop HNC risk prediction models. Seventy percent of the data were used to develop the risk prediction models; the remaining 30% were used to validate the models. We used competing-risk models to calculate absolute risks. The predictors included age, sex, education, race/ethnicity, alcohol drinking intensity, cigarette smoking duration and intensity, and/or family history of HNC. The 20-year absolute risk of HNC was 7.61% for a 60-year-old woman who smoked more than 20 cigarettes per day for over 20 years, consumed 3 or more alcoholic drinks per day, was a high school graduate, had a family history of HNC, and was non-Hispanic white. The 20-year risk for men with a similar profile was 6.85%. The absolute risks of oropharyngeal and hypopharyngeal cancers were generally lower than those of oral cavity and laryngeal cancers. Statistics for the area under the receiver operating characteristic curve (AUC) were 0.70 or higher, except for oropharyngeal cancer in men. This HNC risk prediction model may be useful in promoting healthier behaviors such as smoking cessation or in aiding persons with a family history of HNC to evaluate their risks.


Assuntos
Neoplasias de Cabeça e Pescoço/epidemiologia , Modelos Teóricos , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Estados Unidos/epidemiologia
19.
Drug Metab Dispos ; 48(3): 160-168, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31836608

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens and are a primary risk factor for the development of lung and other aerodigestive tract cancers in smokers. The detoxification of PAHs by glucuronidation is well-characterized for the UDP-glycosyltransferase (UGT) 1A, 2A, and 2B subfamilies; however, the role of the UGT3A subfamily in PAH metabolism remains poorly understood. UGT3A enzymes are functionally distinct from other UGT subfamilies (which use UDP-glucuronic acid as a cosubstrate) due to their utilization of alternative cosubstrates (UDP-N-acetylglucosamine for UGT3A1, and UDP-glucose and UDP-xylose for UGT3A2). The goal of the present study was to characterize UGT3A glycosylation activity against PAHs and examine their expression in human aerodigestive tract tissues. In vitro metabolism assays using UGT3A2-overexpressing cell microsomes indicated that UGT3A2 exhibits glycosylation activity against all of the simple and complex PAHs tested. The V max/K m ratios for UGT3A2 activity with UDP-xylose versus UDP-glucose as the cosubstrate ranged from 0.65 to 4.4 for all PAHs tested, demonstrating that PAH glycosylation may be occurring at rates up to 4.4-fold higher with UDP-xylose than with UDP-glucose. Limited glycosylation activity was observed against PAHs with UGT3A1-overexpressing cell microsomes. While UGT3A2 exhibited low levels of hepatic expression, it was shown by western blot analysis to be widely expressed in aerodigestive tract tissues. Conversely, UGT3A1 exhibited the highest expression in liver with lower expression in aerodigestive tract tissues. These data suggest that UGT3A2 plays an important role in the detoxification of PAHs in aerodigestive tract tissues, and that there may be cosubstrate-dependent differences in the detoxification of PAHs by UGT3A2. SIGNIFICANCE STATEMENT: UGT3A2 is highly active against PAHs with either UDP-glucose or UDP-xylose as a cosubstrate. UGT3A1 exhibited low levels of activity against PAHs. UGT3A1 is highly expressed in liver while UGT3A2 is well expressed in extrahepatic tissues. UGT3A2 may be an important detoxifier of PAHs in humans.

20.
J Diabetes Sci Technol ; : 1932296819883291, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640422

RESUMO

BACKGROUND: Recent reports have suggested that insulin vials purchased in community pharmacies do not meet the minimum required intact insulin concentration (≥95 U/mL) as defined by the United States Pharmacopeia. We sought to independently obtain multidose human insulin vials from a variety of community pharmacies across the state of Washington and quantitatively measure intact insulin. METHODS: Sixty 10-mL vials of insulin (n = 30 regular human insulin and n = 30 neutral protamine Hagedorn insulin) were purchased and assayed. To ensure random selection of lots and supply chain sources, insulin samples were purchased on a variety of calendar dates from various pharmacy locations across Washington State, inclusive of both chain and independent pharmacies. All samples were assessed for intact insulin concentration via both Ultra Performance Liquid Chromatography coupled with UV detection (UPLC-UV) and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). RESULTS: When considering all samples (N = 60), the mean concentration was 101.8 ± 4.4and 91.5 ± 1.9 U/mL as determined by UPLC-UV and UPLC-MS, respectively. Measured concentrations ranged from 90.0 to 108.4 U/mL when assayed by UV UPLC and 86.1 to 95.4 U/mL for UPLC-MS. CONCLUSION: To our knowledge, this is the first study following the report by Carter et al that assessed human insulin concentrations by both UPLC-UV and UPLC-MS. These findings are important because they demonstrate that the results obtained from these two methods differ and that the method used must be considered when interpreting findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA