Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Adv Sci (Weinh) ; 6(9): 1802028, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31065524


The reported power conversion efficiencies (PCEs) of nonfullerene acceptor (NFA) based organic photovoltaics (OPVs) now exceed 14% and 17% for single-junction and two-terminal tandem cells, respectively. However, increasing the PCE further requires an improved understanding of the factors limiting the device efficiency. Here, the efficiency limits of single-junction and two-terminal tandem NFA-based OPV cells are examined with the aid of a numerical device simulator that takes into account the optical properties of the active material(s), charge recombination effects, and the hole and electron mobilities in the active layer of the device. The simulations reveal that single-junction NFA OPVs can potentially reach PCE values in excess of 18% with mobility values readily achievable in existing material systems. Furthermore, it is found that balanced electron and hole mobilities of >10-3 cm2 V-1 s-1 in combination with low nongeminate recombination rate constants of 10-12 cm3 s-1 could lead to PCE values in excess of 20% and 25% for single-junction and two-terminal tandem OPV cells, respectively. This analysis provides the first tangible description of the practical performance targets and useful design rules for single-junction and tandem OPVs based on NFA materials, emphasizing the need for developing new material systems that combine these desired characteristics.

ACS Appl Mater Interfaces ; 11(8): 8310-8318, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30701959


Recently, the advent of non-fullerene acceptors (NFAs) made it possible for organic solar cells (OSCs) to break the 10% efficiency barrier hardly attained by fullerene acceptors (FAs). In the past five years alone, more than hundreds of NFAs with applications in organic photovoltaics (OPVs) have been synthesized, enabling a notable current record efficiency of above 15%. Hence, there is a shift in interest toward the use of NFAs in OPVs. However, there has been little work on the stability of these new materials in devices. More importantly, there is very little comparative work on the photostability of FA versus NFA solar cells to ascertain the pros and cons of the two systems. Here, we show the photostability of solar cells based on two workhorse acceptors, in both conventional and inverted structures, namely, ITIC (as NFA) and [70]PCBM (as FA), blended with either PBDB-T or PTB7-Th polymer. We found that, irrespective of the polymer, the cell structure, or the initial efficiency, the [70]PCBM devices are more photostable than the ITIC ones. This observation, however, opposes the assumption that NFA solar cells are more photochemically stable. These findings suggest that complementary absorption should not take precedence in the design rules for the synthesis of new molecules and there is still work left to be done to achieve stable and efficient OSCs.

ACS Appl Mater Interfaces ; 10(14): 12013-12020, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29546982


In recent years, the efficiency of organic solar cells (OSCs) has increased to more than 13%, although different barriers are on the way for reaching higher efficiencies. One crucial barrier is the recombination of charge carriers, which can either occur as the bulk recombination of photogenerated charges or the recombination of photogenerated charges and electrodic induced charges (EICs). This work studies the impact of EICs on the recombination lifetime in OSCs. To this end, the net recombination lifetime of photogenerated charge carriers in the presence of EICs is measured by means of conventional and newly developed transient photovoltage techniques. Moreover, a new approach has been introduced to exclusively measure the bulk recombination lifetime, i.e., in the absence of EICs; this approach was conducted by depositing transparent insulating layers on both sides of the OSC active layer. An examination of these approaches on OSCs with different active layer materials, thicknesses, and varying light intensities determined that the EICs can only reduce the recombination lifetime of the photogenerated charges in OSCs with very weak recombination strength. This work supports that for OSCs with highly reduced recombination strength, eliminating the recombination of photogenerated charges and EICs is critical for achieving better performance. Therefore, the use of a proper blocking layer suppresses EIC recombination in systems with very weak recombination.

ACS Appl Mater Interfaces ; 9(32): 27290-27297, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28745040


The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.

Adv Mater ; 28(17): 3366-73, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26946165


Efficient homo-tandem and triple-junction polymer solar cells are constructed by stacking identical subcells composed of the wide-bandgap polymer PBDTTPD, achieving power conversion efficiencies >8% paralleled by open-circuit voltages >1.8 V. The high-voltage homo-tandem is used to demonstrate PV-driven electrochemical water splitting with an estimated solar-to-hydrogen conversion efficiency of ≈6%.