Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 303: 48-56, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004984

RESUMO

In this paper we undertake a study of the decoupling efficiency of the Multiple-Pulse (MP) scheme, and a rationalization of its parameterization and of the choice of instrumental set up. This decoupling scheme is known to remove the broadening of spin-1/2 spectra I, produced by the heteronuclear scalar interaction with a half-integer quadrupolar nucleus S, without reintroducing heteronuclear dipolar interaction. The resulting resolution enhancement depends on the set-up of the length of the series of pulses and delays of the MP, and some intrinsic material and instrumental parameters. Firstly through a numerical approach, this study investigates the influence of the main intrinsic material parameters (heteronuclear dipolar and J coupling, quadrupolar interaction, spin nature) and instrumental parameters (spinning rate, pulse field strength) on efficiency and resolution enhancement of the scalar decoupling scheme. A guideline is then proposed to obtain quickly and easily the best resolution enhancement via the rationalization of the instrumental and parameter set up. It is then illustrated and tested through experimental data, probing the efficiency of MP-decoupling set up using this guideline. Various spin systems were tested (31P-51V in VOPO4, 31P-93Nb in NbOPO4, 119Sn-17O in Y2Sn2O7), combined with simulations results.

2.
J Phys Chem Lett ; 10(8): 1698-1708, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30913385

RESUMO

Dynamics of confined molecules within porous materials is equally important as local structural order, and it is necessary to quantify it and to reveal the microscopic mechanisms ruling it for better control of adsorption applications. In this study, molecular dynamics simulations were carried out to investigate the translational and the rotational dynamics of methanol trapped into the flexible NH2-MIL-53(Al) metal-organics framework (MOF). Indeed, atomistic simulation is nowadays a relevant tool to explore matter at the nanoscale. Very recently it has been shown that the NH2-MIL-53(Al) MOF material was capable to undergo a reversible structural transition (breathing phenomenon) by combining adsorption and thermal stimuli. This flexibility can drastically affect the dynamics of confined molecules and therefore the successful conduct of adsorption applications such as gas storage and separation. Rotational and translational dynamics of confined methanol through nanoporous flexible NH2-MIL-53(Al) MOF were then deeply investigated by exploring a broad range of dynamical properties to extract the molecular mechanisms ruling them. This study allowed us to shed light on the interplay of dynamics of confined fluids and flexibility of porous material and to highlight the physical insights in diffusion mechanisms of confined molecules. Anomalous translational diffusion was evidenced due to a dynamical heterogeneity caused by a combination of a localized dynamics at the subnanometric scale and translational jumps between nanodomains in a zigzag scheme between the hydroxide group of the NH2-MIL-53(Al). Actually, the non-Fickian dynamics of methanol is the result of the specific host-guest interactions and the MOF flexibility involving the pore opening. Eventually, decoupling between both rotational and translational dynamics related to breaking in the Stokes-Einstein relation was highlighted.

3.
Inorg Chem ; 58(4): 2659-2668, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30730721

RESUMO

Isostructural lanthanide-based coordination polymers that are obtained by reactions in water of a lanthanide chloride and the sodium salt of 5-methoxyisophthalate (mip2-) have the general chemical formula [Ln2(mip)3(H2O)8·4H2O]∞ with Ln = Nd-Er except Pm plus Y (symbolized by [Ln2(mip)3]∞). Some of these homo-lanthanide compounds present very high luminescence brightness. The weak intermetallic energy transfer between lanthanide ions observed in these compounds allows the design of hetero-lanthanide coordination polymers with tunable luminescence properties. A molecular alloy that involved six different lanthanide ions (Nd3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+) has been prepared and its luminescent properties have been studied. This compound, under a unique irradiation wavelength (λexc = 325 nm), exhibits almost 20 emission peaks in both the visible and the NIR regions at room temperature. This unprecedented richness of the emission spectrum could be of great interest as far as luminescent bar-codes are targeted.

4.
Nanomaterials (Basel) ; 8(7)2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30011917

RESUMO

Reversible structural transition between the Large (LP) and Narrow Pore (NP) forms (breathing phenomena) of the MIL-53(X, X = Al, Cr, Fe, Ga) Metal Organic Framework (MOF) is probably one of the most amazing physical properties of this class of soft-porous materials. Whereas great attention has been paid to the elucidation of the physical mechanism ruling this reversible transition, the effect of the functionalization on the flexibility has been less explored. Among functionalized MIL-53(Al) materials, the case of NH2-MIL-53(Al) is undoubtedly a very intriguing structural transition rarely observed, and the steadier phase corresponds to the narrow pore form. In this work, the flexibility of the NH2-MIL-53(Al) metal organic framework was investigated by means of molecular dynamics simulations. Guest (methanol) and thermal breathing of the NH2-MIL-53(Al) was thus explored. We show that it is possible to trigger a reversible transition between NP and LP forms upon adsorption, and we highlight the existence of stable intermediate forms and a very large pore phase. Furthermore, the NP form is found thermodynamically stable from 240 to 400 K, which is the result of strong intramolecular hydrogen bonds.

5.
Inorg Chem ; 57(5): 2517-2528, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29430932

RESUMO

The structure of the binary chalcohalide glasses Te1- xCl x (0.35 ≤ x ≤ 0.65) is considered by combining experimental and theoretical results. The structural network properties are influenced by a competition between ionic and covalent bonding in such glasses. At first, a focus is placed on the detailed information available by using the complementary high-energy X-ray and the neutron diffractions in both the reciprocal and real spaces. The main characteristic suggested by the structure factors S( Q) concerns the presence of three length scales in the intermediate range order. The total correlation function T( r) lets us also suppose that the structure of these glasses is more complicated than Te-chain fragments with terminal Cl as demonstrated in crystalline Te3Cl2. Molecular dynamics simulations were subsequently performed on Te3Cl2 and Te2Cl3, and coupled with the experimental data, a highly reticulated network of chalcogen atoms, with a fair amount of chlorine atoms bonded in a bridging mode, is proposed. The simulations clearly lead to a glass description that differs markedly from the simple structural model based on only Te atom chains and terminal Cl atoms. Solid-state NMR experiments and NMR parameters calculations allowed validation of the presence of Te highly coordinated with chlorine in these glasses.

6.
Langmuir ; 33(7): 1605-1613, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28112943

RESUMO

Three volatile organic compounds (VOCs), benzene, cyclohexane, and dichloromethane, were adsorbed onto activated carbon fiber cloth. 1H (magic-angle spinning (MAS) and pulsed field gradient (PFG)) NMR techniques were carried out, and the signals were analyzed in terms of peak surface areas and shifts. These techniques were shown to be very useful for determining (i) the intrinsic quantification of adsorbed molecules (VOCs and/or water) in the porosity of the materials (the adsorption capacities ranged from 0.2 to 4 mol·kg-1); (ii) the mechanisms of interactions between adsorbed organic molecules and the carbon walls (illustrations of positions of the molecule inside the pore volume are proposed; the proton-wall distance was less than 0.15 nm); and (iii) the diffusivities (surface diffusion coefficients (DS) were estimated at ≈4.10-12 m2·s-1 for cyclohexane, ≈1.10-11 m2·s-1 for benzene, and ≈4.10-11 m2·s-1 for dichloromethane).

7.
Phys Chem Chem Phys ; 18(39): 27133-27142, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27722277

RESUMO

We report on 207Pb, 79Br, 14N, 1H, 13C and 2H NMR experiments for studying the local order and dynamics in hybrid perovskite lattices. 207Pb NMR experiments conducted at room temperature on a series of MAPbX3 compounds (MA = CH3NH3+; X = Cl, Br and I) showed that the isotropic 207Pb NMR shift is strongly dependent on the nature of the halogen ions. Therefore 207Pb NMR appears to be a very promising tool for the characterisation of local order in mixed halogen hybrid perovskites. 207Pb NMR on MAPbBr2I served as a proof of concept. Proton, 13C and 14N NMR experiments confirmed the results previously reported in the literature. Low temperature deuterium NMR measurements, down to 25 K, were carried out to investigate the structural phase transitions of MAPbBr3. Spectral lineshapes allow following the successive phase transitions of MAPbBr3. Finally, quadrupolar NMR lineshapes recorded in the orthorhombic phase were compared with simulated spectra, using DFT calculated electric field gradients (EFG). Computed data do not take into account any temperature effect. Thus, the discrepancy between the calculated and experimental EFG evidences the fact that MA cations are still subject to significant dynamics, even at 25 K.

8.
Phys Chem Chem Phys ; 17(43): 29020-6, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26456891

RESUMO

Selenium-rich Ge-Te-Se glasses have been synthesized along the GeSe4-GeTe4 pseudo-composition line and acquired by (77)Se Hahn echo magic-angle spinning NMR. The comparison with the GeSe4 spectrum shows a drastic modification of the typical double-resonance lineshape even at low Te concentrations (<10%). In order to rationalize this feature and to understand the effect of Te on the structure of our glasses, first-principles molecular dynamics simulations and gauge including projector augmented wave NMR parameter calculations have been performed. The distribution of the tellurium atoms in the selenium phase was shown to be mainly responsible for the (77)Se lineshape changes. Another possible factor related to the perturbation of the δiso value due to Te proximity appears to be much more limited in the bulk, while the results obtained using molecular models suggest shifts of several hundreds of ppm.

9.
Inorg Chem ; 54(16): 7673-83, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26208250

RESUMO

[Mo6X14](2-) octahedral molybdenum clusters are the main building blocks of a large range of materials. Although (95)Mo nuclear magnetic resonance was proposed to be a powerful tool to characterize their structural and dynamical properties in solution, these measurements have never been complemented by theoretical studies which can limit their interpretation for complex systems. In this Article, we use quantum chemical calculations to evaluate the (95)Mo chemical shift of three clusters: [Mo6Cl14](2-), [Mo6Br14](2-), and [Mo6I14](2-). In particular, we test various computational parameters influencing the quality of the results: size of the basis set, treatment of relativistic and solvent effects. Furthermore, to provide quantum chemical calculations that are directly comparable with experimental data, we evaluate for the first time the (95)Mo nuclear magnetic shielding of the experimental reference, namely, MoO4(2-) in aqueous solution. This is achieved by combining ab initio molecular dynamics simulations with a periodic approach to evaluate the (95)Mo nuclear shieldings. The results demonstrate that, despite the difficulty to obtain accurate (95)Mo chemical shifts, relative values for a cluster series can be fairly well-reproduced by DFT calculations. We also show that performing an explicit solvent treatment for the reference compound improves by ∼50 ppm the agreement between theory and experiment. Finally, the standard deviation of ∼70 ppm that we calculate for the (95)Mo nuclear shielding of the reference provides an estimation of the accuracy we can achieve for the calculation of the (95)Mo chemical shifts using a static approach. These results demonstrate the growing ability of quantum chemical calculations to complement and interpret complex experimental measurements.


Assuntos
Molibdênio/química , Teoria Quântica , Isótopos , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Dinâmica Molecular , Solventes/química
10.
J Nat Prod ; 78(6): 1284-93, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26070107

RESUMO

The molecular composition of 10 Cretaceous and one Eocene ambers from France was analyzed by infrared spectroscopy, solid-state (13)C nuclear magnetic resonance spectroscopy, and thermochemolysis gas chromatography-mass spectrometry. The terpenoids identified in the samples were used as biomarkers for the botanical origin of the resins. The Cretaceous samples, comprising the so-called Alpine, Anjou, Charentese, Provence, Pyrenean, and Vendean ambers, ranged from the Albian-Cenomanian transition to the early Santonian (100 to 85 Ma) and correspond to class Ib resins typical of conifers. The extinct conifer family Cheirolepidiaceae was proposed as the plant source of Pyrenean and brown Charentese ambers. Araucariaceae or Cheirolepidiaceae were the plant sources of the Cenomanian Alpine, Anjou, and yellow Charentese ambers. The Santonian ambers of Provence and Vendée were found to derive from the Cupressaceae. The Eocene Oise amber (ca. 53 Ma) is a class Ic resin typical of angiosperms and was produced by a Fabaceae. The evolution of resin sources from the early Cretaceous to the Eocene periods is discussed. Finally, a possible fingerprint hitherto unveiled is proposed for cheirolepidiaceous resins, defined by the simultaneous presence of phenolic diterpenoids, labdanoic acids, callitrisate structures, and their respective derivatives.


Assuntos
Âmbar/química , Ácidos Dicarboxílicos/isolamento & purificação , Diterpenos/isolamento & purificação , Terpenos/análise , Tetra-Hidronaftalenos/isolamento & purificação , Ácidos Dicarboxílicos/química , Diterpenos/química , Fabaceae/química , França , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Plantas/química , Espectrofotometria Infravermelho , Terpenos/química , Tetra-Hidronaftalenos/química , Traqueófitas/química
11.
Inorg Chem ; 54(12): 6043-54, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26024151

RESUMO

For the first time, hexanuclear complexes with general chemical formula [Ln6O(OH)8(NO3)6(H2O)n](2+) with n = 12 for Ln = Sm-Lu and Y and n = 14 for Ln = Pr and Nd were stabilized as nanoaggregates in ethylene glycol (EG). These unprecedented nanoaggregates were structurally characterized by (89)Y and (1)H NMR spectroscopy, UV-vis absorption and luminescence spectroscopies, electrospray ionization mass spectrometry, diffusion ordered spectroscopy, transmission electron microscopy, and dynamic light scattering. These nanoaggregates present a 200 nm mean solvodynamic diameter. In these nanoaggregates, hexanuclear complexes are isolated and solvated by EG molecules. The replacement of ethylene glycol by 2-hydroxybenzyl alcohol provides new nanoaggregates that present an antenna effect toward lanthanide ions. This results in a significant enhancement of the luminescence properties of the aggregates and demonstrates the suitability of the strategy for obtaining highly tunable luminescent solutions.

12.
Phys Chem Chem Phys ; 16(33): 17975-82, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25050418

RESUMO

Solid-state (77)Se NMR measurements, first-principles molecular dynamics and DFT calculations of NMR parameters were performed to gain insight into the structure of selenium-rich GexSe(1-x) glasses. We recorded the fully-relaxed NMR spectra on natural abundance and 100% isotopically enriched GeSe4 samples, which led us to reconsider the level of structural heterogeneity in this material. In this paper, we propose an alternative procedure to initialise molecular dynamics runs for the chalcogenide glasses. The (77)Se NMR spectra calculated on the basis of the structural models deduced from these simulations are consistent with the experimental spectrum.

13.
Inorg Chem ; 52(11): 6720-30, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23692502

RESUMO

Reactions in solvothermal conditions between hexanuclear rare earth complexes and H2bdc, where H2bdc symbolizes terephthalic acid, lead to a family of monodimensional coordination polymers in which hexanuclear complexes act as metallic nodes. The hexanuclear cores can be either homometallic with general chemical formula [Ln6O(OH)8(NO3)6](2+) (Ln = Pr-Lu plus Y) or heterometallic with general chemical formula [Ln(6x)Ln'(6-6x)O(OH)8(NO3)6](2+) (Ln and Ln' = Pr-Lu plus Y). Whatever the hexanuclear entity is, the resulting coordination polymer is iso-structural to [Y6O(OH)8(NO3)2(bdc)(Hbdc)2·2NO3·H2bdc]∞, a coordination polymer that we have previously reported. The random distribution of the lanthanide ions over the six metallic sites of the hexanuclear entities is demonstrated by (89)Y solid state NMR, X-ray diffraction (XRD), and luminescent measurements. The luminescent and colorimetric properties of selected compounds that belong to this family have been studied. These studies demonstrate that some of these compounds exhibit very promising optical properties and that there are two ways of modulating the luminescent properties: (i) playing with the composition of the heterohexanuclear entities or (ii) playing with the relative ratio between two different hexanuclear entities. This enables the independent tuning of luminescence intensity and color.


Assuntos
Cor , Elementos da Série dos Lantanídeos/química , Luminescência , Compostos Organometálicos/química , Polímeros/química , Cristalografia por Raios X , Modelos Moleculares , Compostos Organometálicos/síntese química
14.
Dalton Trans ; 42(22): 8124-31, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23584576

RESUMO

Structural investigations on vanadium phosphates, which are extensively used as catalysts in industry, often resulted in important advances in the understanding of the mechanisms driving the catalytic oxidation of light hydrocarbons. Layer translations in the two lamellar vanadium phosphates α1- and α2-VOPO4 phases identified during the catalysis were investigated by the combination of first-principles calculations, synchrotron X-ray powder diffraction, single-crystal X-ray diffraction and solid-state NMR. This analysis reveals an important feature: the α1-form is the only polymorph of VOPO4 to exhibit layer translations that prevent the formation of infinite VO6 chains. A detailed investigation of this structural characteristic in vanadium phosphates reveals the correlation between the presence of infinite VO6 chains and the catalytic performances of related phases.

15.
Phys Chem Chem Phys ; 15(17): 6284-92, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23519318

RESUMO

(77)Se NMR parameters for three prototypical crystalline compounds (As2Se3, As4Se4 and As4Se3) have been determined from solid-state NMR spectra in the framework of an investigation concerning AsxSe(1-x) glass structure understanding. Density functional NMR calculations using the gauge including projector augmented wave methodology have been performed on X-ray and optimized crystal structures for a set of selenium-based crystals. These theoretical results have been combined with the experimental data in order to achieve a precise assignment of the spectral lines. This work and the high sensitivity of solid-state NMR to local order show that the structure of As4Se3 should be reinvestigated using state-of-the-art diffraction techniques. Calculations performed on several molecules derived from the crystal structures have demonstrated the limited effect of interlayer or intermolecular interactions on the isotropic chemical shifts. These interactions are therefore not responsible for the unexpected large chemical shift difference observed between these three systems that could mostly be attributed to the presence of short rings.

16.
Inorg Chem ; 52(2): 617-27, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23273147

RESUMO

The ability of (95)Mo solid-state nuclear magnetic resonance (SSNMR) spectroscopy to probe the atomic and electronic structures of inorganic molybdenum cluster materials has been demonstrated for the first time. Six cluster compounds were studied: MoBr(2), Cs(2)Mo(6)Br(14), (Bu(4)N)(2)Mo(6)Br(14), each containing the octahedral Mo(6)Br(14)(2-) cluster unit, and MoS(2)Cl(3), Mo(3)S(7)Cl(4), and MoSCl that contain metallic dimers, trimers, and tetramers, respectively. To overcome inherent difficulties due to the low sensitivity of (95)Mo SSNMR, both high-magnetic-field spectrometers and the quadrupolar Carr-Purcell Meiboom-Gill sensitivity enhancement pulse sequence under magic-angle-spinning conditions, combined with a hyperbolic-secant pulse were used. Experimental measurements as well as characterization of the (95)Mo electric field gradient and chemical shift tensors have been performed with the help of quantum-chemical calculations under periodic boundary conditions using the projector augmented-wave and the gauge-including projector augmented-wave methods, respectively. A large (95)Mo chemical shift range is measured, ∼3150 ppm, and the isotropic chemical shift of the Mo atoms is clearly correlated to their formal oxidation degree in the various clusters. Furthermore, a direct relation is evidenced between the molybdenum quadrupolar coupling constant and the bond lengths with its surrounding ligands. Our results demonstrate the efficiency of the combined use of quantum-chemical calculations and (95)Mo SSNMR experiments to study inorganic molybdenum cluster compounds.

17.
Chemistry ; 17(49): 13806-13, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22052769

RESUMO

The new compounds LiLn(9)Mo(16)O(35) (Ln=La, Ce, Pr, and Nd) were synthesized from stoichiometric mixtures of Li(2)MoO(4), Ln(2)O(3), Pr(6)O(11) or CeO(2), MoO(3), and Mo heated at 1600 °C for 48 h in a molybdenum crucible sealed under a low argon pressure. The crystal structure, determined from a single crystal of the Nd member, showed that the main building block is the Mo(16)O(36) unit, the Mo(16) core of which is totally new and results from the fusion of two bioctahedral Mo(10) clusters. It can also be viewed as a fragment of an infinite twin chain of edge-sharing Mo(6) octahedra. The Mo(16)O(36) cluster units share some oxygen atoms to form infinite chains running parallel to the b axis, which are separated by the rare-earth and lithium cations. (7)Li-NMR experiments, carried out at high field on the nonmagnetic LiLa(9)Mo(16)O(35), provided insights into the local environment of the lithium ions. Magnetic susceptibility measurements confirmed the trivalent oxidation state of the magnetic rare-earth cations and indicated the absence of localized moments on the Mo(16) clusters. The electronic structure of the LiLn(9)Mo(16)O(35) compounds was analyzed using molecular and periodic quantum calculations. The study of the molecular orbital diagrams of isolated Mo(16)O(36) models allowed the understanding of this unique metallic architecture. Periodic density functional theory calculations demonstrated that few interactions occur between the Mo(16) clusters, and predicted semiconducting properties for LiLn(9)Mo(16)O(35) as a band gap of 0.57 eV was computed for the lanthanum phase.

18.
Phys Chem Chem Phys ; 13(43): 19471-9, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21960056

RESUMO

Solid-state (95)Mo nuclear magnetic resonance (NMR) properties of molybdenum hexacarbonyl have been computed using density functional theory (DFT) based methods. Both quadrupolar coupling and chemical shift parameters were evaluated and compared with parameters of high precision determined using single-crystal (95)Mo NMR experiments. Within a molecular approach, the effects of major computational parameters, i.e. basis set, exchange-correlation functional, treatment of relativity, have been evaluated. Except for the isotropic parameter of both chemical shift and chemical shielding, computed NMR parameters are more sensitive to geometrical variations than computational details. Relativistic effects do not play a crucial part in the calculations of such parameters for the 4d transition metal, in particular isotropic chemical shift. Periodic DFT calculations were tackled to measure the influence of neighbouring molecules on the crystal structure. These effects have to be taken into account to compute accurate solid-state (95)Mo NMR parameters even for such an inorganic molecular compound.

19.
J Magn Reson ; 203(2): 226-35, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089429

RESUMO

To efficiently obtain multiple-quantum magic-angle spinning (MQMAS) spectra of the nuclide 45Sc (I=7/2), we have combined several previously suggested techniques to enhance the signal-to-noise ratio and to improve spectral resolution for the test sample, scandium sulphate pentahydrate (ScSPH). Whereas the 45Sc-3QMAS spectrum of ScSPH does not offer sufficient resolution to clearly distinguish between the 3 scandium sites present in the crystal structure, these sites are well-resolved in the 5QMAS spectrum. The loss of sensitivity incurred by using MQMAS with 5Q coherence order is partly compensated for by using fast-amplitude modulated (FAM) sequences to improve the efficiency of both 5Q coherence excitation and conversion. Also, heteronuclear decoupling is employed to minimise dephasing of the 45Sc signal during the 5Q evolution period due to dipolar couplings with the water protons in the ScSPH sample. Application of multi-pulse decoupling schemes such as TPPM and SPINAL results in improved sensitivity and resolution in the F(1) (isotropic) dimension of the 5QMAS spectrum, the best results being achieved with the recently suggested SW(f)-TPPM sequence. By numerical fitting of the 45Sc-NMR spectra of ScSPH from 3QMAS, 5QMAS and single-quantum MAS at magnetic fields B(0)=9.4 T and 17.6 T, the isotropic chemical shift delta(iso), the quadrupolar coupling constant chi, and the asymmetry parameter eta were obtained. Averaging over all experiments, the NMR parameters determined for the 3 scandium sites, designated (a), (b) and (c) are: delta(iso)(a)=-15.5+/-0.5 ppm, chi(a)=5.60+/-0.10 MHz, eta(a)=0.06+/-0.05; delta(iso)(b)=-12.9+/-0.5 ppm, chi(b)=4.50+/-0.10 MHz, eta(b)=1.00+/-0.00; and delta(iso)(c)=-4.7+/-0.2 ppm, chi(c)=4.55+/-0.05 MHz, eta(c)=0.50+/-0.02. The NMR scandium species were assigned to the independent crystallographic sites by evaluating their experimental response to proton decoupling, and by density functional theory (DFT) calculations using the PAW and GIPAW approaches, in the following way: Sc(1) to (c), Sc(2) to (a), and Sc(3) to (b). The need to compute NMR parameters using an energy-optimised crystal structure is once again demonstrated.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Escândio/química , Sulfatos/química , Escândio/análise , Sulfatos/análise
20.
Chemphyschem ; 10(18): 3320-9, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-19937665

RESUMO

The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.


Assuntos
Espectroscopia de Ressonância Magnética , Molibdênio/química , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA