Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37463421

RESUMO

For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.


Assuntos
Altitude , Óxido Nítrico , Animais , Humanos , Camundongos , Adaptação Fisiológica/genética , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia/genética
2.
PLoS One ; 17(9): e0273083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36048882

RESUMO

The creation of global research partnerships is critical to produce shared knowledge for the implementation of the UN 2030 Agenda for Sustainable Development. Sustainability science promotes the coproduction of inter- and transdisciplinary knowledge, with the expectation that studies will be carried out through groups and truly collaborative networks. As a consequence, sustainability research, in particular that published in high impact journals, should lead the way in terms of ethical partnership in scientific collaboration. Here, we examined this issue through a quantitative analysis of the articles published in Nature Sustainability (300 papers by 2135 authors) and Nature (2994 papers by 46,817 authors) from January 2018 to February 2021. Focusing on these journals allowed us to test whether research published under the banner of sustainability science favoured a more equitable involvement of authors from countries belonging to different income categories, by using the journal Nature as a control. While the findings provide evidence of still insufficient involvement of Low-and-Low-Middle-Income-Countries (LLMICs) in Nature Sustainability publications, they also point to promising improvements in the involvement of such authors. Proportionally, there were 4.6 times more authors from LLMICs in Nature Sustainability than in Nature articles, and 68.8-100% of local Global South studies were conducted with host country scientists (reflecting the discouragement of parachute research practices), with local scientists participating in key research steps. We therefore provide evidence of the promising, yet still insufficient, involvement of low-income countries in top sustainability science publications and discuss ongoing initiatives to improve this.


Assuntos
Pobreza , Publicações , Conhecimento
3.
Physiology (Bethesda) ; 37(4): 0, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001654

RESUMO

Erythrocytosis, or increased production of red blood cells, is one of the most well-documented physiological traits that varies within and among in high-altitude populations. Although a modest increase in blood O2-carrying capacity may be beneficial for life in highland environments, erythrocytosis can also become excessive and lead to maladaptive syndromes such as chronic mountain sickness (CMS).


Assuntos
Doença da Altitude , Policitemia , Altitude , Doença Crônica , Humanos , Fenótipo
4.
Lancet Reg Health Am ; 7: 100148, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36777656

RESUMO

Peru celebrates 200 years of independence in 2021. Over this period of independent life, and despite the turbulent socio-political scenarios, from internal armed conflict to economic crisis to political instability over the last 40 years, Peru has experienced major changes on its epidemiological and population health profile. Major advancements in maternal and child health as well as in communicable diseases have been achieved in recent decades, and today Peru faces an increasing burden of non-communicable diseases including mental health conditions. In terms of the configuration of the public health system, Peru has also strived to secure country-wide optimal health care, struggling in particular to improve primary health care and intercultural services. The science and technology infrastructure has also evolved, although the need for substantial investments remains if advancing science is to be a national priority. Climate change will also bring significant challenges to population health given Peru's geographical and microclimates diversity. Looking back over the 200-years of independence, we present a summary of key advances in selected health-related fields, thus serving as the basis for reflections on pending agendas and future challenges, in order to look forward to ensuring the future health and wellbeing of the Peruvian population. Resumen translated abstract: El Perú cumple 200 años de independencia en 2021. Durante estos dos siglos de vida independiente, junto con periodos sociales y políticos turbulentos, incluyendo un conflicto armado interno, hiperinflación y la inestabilidad política de los últimos 40 años, el Perú ha experimentado importantes cambios en su perfil epidemiológico con repercusiones directas en la salud de la población. En las últimas décadas, los indicadores de salud materno-infantil y de las enfermedades transmisibles muestran mejoría importante, pero el país se enfrenta de manera simultánea a una carga cada vez mayor de enfermedades no transmisibles y de salud mental. En cuanto a los sistemas de salud pública, se han realizado esfuerzos por aumentar la cobertura y calidad de la atención de salud en todo el país, apostándose en particular por mejorar la atención primaria. La ciencia y tecnología relacionadas con la salud también han mejorado, aunque si se quiere que la ciencia sea una prioridad nacional, son necesarias inversiones sustanciales. El cambio climático traerá importantes desafíos para la salud de la población, dada la diversidad geográfica y de microclimas del país. Para conmemorar los 200 años de vida independiente del Perú, presentamos un resumen de avances clave en diversas áreas y temas relacionados con la salud. Este repaso sirve como base para reflexionar sobre agendas y desafíos pendientes y futuros, con el fin de asegurar la salud y el bienestar de la población peruana en las próximas décadas.

5.
Environ Int ; 155: 106587, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33940396

RESUMO

BACKGROUND: Inorganic lead (Pb) is common in the environment, and is toxic to neurological, renal, and cardiovascular systems. Pb exposure influences the epigenome with documented effects on DNA methylation (DNAm). We assessed the impact of low levels of Pb exposure on DNAm among non-miner individuals from two locations in Peru: Lima, the capital, and Cerro de Pasco, a highland mining town, to study the effects of Pb exposure on physiological outcomes and DNAm. METHODS: Pb levels were measured in whole blood (n = 305). Blood leukocyte DNAm was determined for 90 DNA samples using the Illumina MethylationEPIC chip. An epigenome-wide association study was performed to assess the relationship between Pb and DNAm. RESULTS: Individuals from Cerro de Pasco had higher Pb than individuals from Lima (p-value = 2.00E-16). Males had higher Pb than females (p-value = 2.36E-04). Pb was positively associated with hemoglobin (p-value = 8.60E-04). In Cerro de Pasco, blood Pb decreased with the distance from the mine (p-value = 0.04), and association with soil Pb was approaching significance (p-value = 0.08). We identified differentially methylated positions (DMPs) associated with genes SOX18, ZMIZ1, and KDM1A linked to neurological function. We also found 45 differentially methylated regions (DMRs), seven of which were associated with genes involved in metal ion binding and nine to neurological function and development. CONCLUSIONS: Our results demonstrate that even low levels of Pb can have a significant impact on the body including changes to DNAm. We report associations between Pb and hemoglobin, Pb and distance from mining, and between blood and soil Pb. We also report associations between loci- and region-specific DNAm and Pb.


Assuntos
Metilação de DNA , Chumbo , Adulto , Epigênese Genética , Epigenoma , Feminino , Hispânico ou Latino , Histona Desmetilases , Humanos , Chumbo/toxicidade , Masculino , Peru , Fatores de Transcrição SOXF
6.
Genome Biol Evol ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33185669

RESUMO

High-altitude adaptation is a classic example of natural selection operating on the human genome. Physiological and genetic adaptations have been documented in populations with a history of living at high altitude. However, the role of epigenetic gene regulation, including DNA methylation, in high-altitude adaptation is not well understood. We performed an epigenome-wide DNA methylation association study based on whole blood from 113 Peruvian Quechua with differential lifetime exposures to high altitude (>2,500) and recruited based on a migrant study design. We identified two significant differentially methylated positions (DMPs) and 62 differentially methylated regions (DMRs) associated with high-altitude developmental and lifelong exposure statuses. DMPs and DMRs were found in genes associated with hypoxia-inducible factor pathway, red blood cell production, blood pressure, and others. DMPs and DMRs associated with fractional exhaled nitric oxide also were identified. We found a significant association between EPAS1 methylation and EPAS1 SNP genotypes, suggesting that local genetic variation influences patterns of methylation. Our findings demonstrate that DNA methylation is associated with early developmental and lifelong high-altitude exposures among Peruvian Quechua as well as altitude-adaptive phenotypes. Together these findings suggest that epigenetic mechanisms might be involved in adaptive developmental plasticity to high altitude. Moreover, we show that local genetic variation is associated with DNA methylation levels, suggesting that methylation associated SNPs could be a potential avenue for research on genetic adaptation to hypoxia in Andeans.


Assuntos
Altitude , Epigênese Genética , Adulto , Metilação de DNA , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Masculino , Peru , Fenótipo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
7.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202984

RESUMO

One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats developed RVH and showed an upregulation of LOX-1, Nox2 and p22phox and an increase in lipid peroxidation, HIF-1α stabilization and p38α activation. Rats with long-term CIH-induced RVH clearly showed Nox2, p22phox and LOX-1 upregulation and increased lipid peroxidation, HIF-1α stabilization and p38α activation. Therefore, these molecules may be considered new targets in CIH-induced RVH.


Assuntos
Regulação Enzimológica da Expressão Gênica , Hipertrofia Ventricular Direita/enzimologia , Hipóxia/enzimologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , NADPH Oxidase 2/biossíntese , Regulação para Cima , Animais , Doença Crônica , Modelos Animais de Doenças , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/patologia , Hipóxia/complicações , Hipóxia/patologia , Masculino , Ratos , Ratos Wistar
9.
Front Physiol ; 11: 342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32372974

RESUMO

BACKGROUND: Both chronic hypoxia (CH) and long-term chronic intermittent hypoxia (CIH) exposure lead to right ventricular hypertrophy (RVH). Weight loss is an effective intervention to improve cardiac function and energy metabolism in cardiac hypertrophy. Likewise, caloric restriction (CR) also plays an important role in this cardioprotection through AMPK activation. We aimed to determine the influence of body weight (BW) on RVH, AMPK and related variables by comparing rats exposed to both hypoxic conditions. METHODS: Sixty male adult rats were separated into two groups (n = 30 per group) according to their previous diet: a caloric restriction (CR) group and an ad libitum (AL) group. Rats in both groups were randomly assigned to 3 groups: a normoxic group (NX, n = 10), a CIH group (2 days hypoxia/2 days normoxia; n = 10) and a CH group (n = 10). The CR group was previously fed 10 g daily, and the other was fed ad libitum. Rats were exposed to simulated hypobaric hypoxia in a hypobaric chamber set to 428 Torr (the equivalent pressure to that at an altitude of 4,600 m above sea level) for 30 days. Measurements included body weight; hematocrit; serum insulin; glycemia; the degree of RVH (Fulton's index and histology); and AMPK, mTOR, and PP2C expression levels in the right ventricle determined by western blotting. RESULTS: A lower degree of RVH, higher AMPK activation, and no activation of mTOR were found in the CR groups exposed to hypobaric hypoxia compared to the AL groups (p < 0.05). Additionally, decreased glycemia and serum insulin levels were observed. Interestingly, PP2C expression showed an increase in the AL groups but not in the CR groups (p < 0.05). CONCLUSION: Maintaining a low weight before and during exposure to high-altitude hypoxia, during either CH or CIH, could prevent a major degree of RVH. This cardioprotection would likely be due to the activation of AMPK. Thus, body weight is a factor that might contribute to RVH at high altitudes.

10.
High Alt Med Biol ; 21(1): 92-98, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31977247

RESUMO

Background: The soluble form of the erythropoietin (Epo) receptor (sEpoR) is an endogenous antagonist of Epo. Decreasing plasma sEpoR increases free Epo, thereby increasing the availability of the hormone. In humans, short-term intermittent normobaric hypoxia exposure reduces sEpoR concentration in plasma. However, whether similar changes occur during continuous hypoxia, such as during high-altitude exposure with ongoing acclimatization, is yet unknown. Therefore, this study aimed to characterize the time-course concentration profile of sEpoR, and also of Epo, reticulocyte count (RC), and hematocrit in healthy lowlanders during 4 days at high altitude. Methods: Twenty-two men residents at sea level traveled by road (∼7 hours) from Lima to Cerro de Pasco (4340 m) for 72 hours. Oxygen saturation as measured by pulse oximetry (SpO2), heart rate, systolic and diastolic blood pressure, Lake Louise Score, sEpoR, Epo, RC, and hematocrit were evaluated every 12 hours, starting 12 hours before the ascent. Results: Plasma sEpoR decreased by 19% and remained below baseline values throughout high-altitude exposure. In parallel, Epo levels increased during the first hours, reaching a peak at 48 hours, and then progressively decreased until 72 hours. As a result, the Epo-to-sEpoR ratio (Epo/sEpoR) remained significantly elevated compared with baseline values. RC increased linearly until the end of the protocol, and hematocrit only showed a marginal increase. Conclusion: Our results show that high-altitude hypoxia causes a significant and stable reduction of plasma sEpoR concentration within the first 24 hours, whereas plasma Epo constantly decreases after having reached a maximum by 48 hours. This simultaneous change leads to a relatively high Epo/sEpoR after 72 hours at high altitude. The early increase in hematocrit likely relates to hemoconcentration, but the steady increase in RC reflects a sustained erythropoietic drive that will lead to elevate hematocrit to a new steady state after acclimatization.


Assuntos
Doença da Altitude , Eritropoetina , Altitude , Humanos , Hipóxia , Masculino , Plasma , Receptores da Eritropoetina
11.
Proc Natl Acad Sci U S A ; 116(48): 24006-24011, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712437

RESUMO

Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO2max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene (EGLN1) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO2max (L⋅min-1 and mL⋅min-1⋅kg-1) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO2max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO2max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min-1⋅kg-1 vs. CC = 30.5 mL⋅min-1⋅kg-1). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O2 delivery or use during exercise at altitude in Peruvian Quechua.


Assuntos
Altitude , Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Hipóxia/genética , Oxigênio/metabolismo , Polimorfismo de Nucleotídeo Único , Aclimatação , Adaptação Fisiológica , Feminino , Frequência do Gene , Genótipo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Povos Indígenas , Masculino , Peru , Seleção Genética , Estresse Fisiológico
12.
Am J Phys Anthropol ; 170(3): 451-458, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31396964

RESUMO

OBJECTIVES: Andean and Tibetan high-altitude natives exhibit a high concentration of nitric oxide (NO) in the lungs, suggesting that NO plays an adaptive role in offsetting hypobaric hypoxia. We examined the exhaled NO concentration as well as partial pressure of several additional high-altitude native populations in order to examine the possibility that this putative adaptive trait, that is, high exhaled NO, is universal. METHODS: We recruited two geographically diverse highland native populations, Tawang Monpa (TM), a Tibetan derived population in North-Eastern India (n = 95, sampled at an altitude of ~3,200 m), and Peruvian Quechua from the highland Andes (n = 412). The latter included three distinct subgroups defined as those residing at altitude (Q-HAR, n = 110, sampled at 4,338 m), those born and residing at sea-level (Q-BSL, n = 152), and those born at altitude but migrant to sea-level (Q-M, n = 150). In addition, we recruited a referent sample of lowland natives of European ancestry from Syracuse, New York. Fraction of exhaled NO concentrations were measured using a NIOX NIMO following the protocol of the manufacturer. RESULTS: Partial pressure of exhaled nitric oxide (PENO) was significantly lower (p < .05) in both high-altitude resident groups (TM = 6.2 ± 0.5 nmHg and Q-HAR = 5.8 ± 0.5 nmHg), as compared to the groups measured at sea level (USA = 14.6 ± 0.7 nmHg, Q-BSL = 18.9 ± 1.6 nmHg, and Q-M = 19.2 ± 1.7 nmHg). PENO was not significantly different between TM and Q-HAR (p < .05). CONCLUSION: In contrast to previous work, we found lower PENO in populations at altitude (compared to sea-level) and no difference in PENO between Tibetan and Andean highland native populations. These results do not support the hypothesis that high nitric oxide in human lungs is a universal adaptive mechanism of highland native populations to offset hypobaric hypoxia.


Assuntos
Expiração , Óxido Nítrico/metabolismo , Adaptação Fisiológica , Adulto , Altitude , Feminino , Humanos , Índia , Índios Sul-Americanos , Masculino , Peru , Tibet/etnologia , Adulto Jovem
13.
Front Genet ; 10: 690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417607

RESUMO

Chronic mountain sickness (CMS) is a pathological condition resulting from chronic exposure to high-altitude hypoxia. While its prevalence is high in native Andeans (>10%), little is known about the genetic architecture of this disease. Here, we performed the largest genome-wide association study (GWAS) of CMS (166 CMS patients and 146 controls living at 4,380 m in Peru) to detect genetic variants associated with CMS. We highlighted four new candidate loci, including the first CMS-associated variant reaching GWAS statistical significance (rs7304081; P = 4.58 × 10-9). By looking at differentially expressed genes between CMS patients and controls around these four loci, we suggested AEBP2, CAST, and MCTP2 as candidate CMS causal genes. None of the candidate loci were under strong natural selection, consistent with the observation that CMS affects fitness mainly after the reproductive years. Overall, our results reveal new insights on the genetic architecture of CMS and do not provide evidence that CMS-associated variants are linked to a strong ongoing adaptation to high altitude.

14.
PLoS Negl Trop Dis ; 13(7): e0007483, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306424

RESUMO

OBJECTIVE: In Peru, the past three decades have witnessed impressive growth in biomedical research catalyzed from a single research university and its investigators who secured international partnerships and funding. We conducted a bibliometric analysis of publications by Peruvian authors to understand the roots of this growth and the spread of research networks within the country. METHODS: For 1997-2016, publications from Web of Science with at least one author affiliated with a Peruvian institution were examined by year, author affiliations, funding agencies, co-authorship linkages, and research topics. RESULTS: From 1997-2016, the annual number of publications from Peru increased 9-fold from 75 to 672 totaling 6032. Of these, 56% of the articles had co-authors from the US, 13% from the UK, 12% from Brazil, and 10% from Spain. Universidad Peruana Cayetano Heredia (UPCH) was clearly the lead research institution noted on one-third of publications. Of the 20 most published authors, 15 were Peruvians, 14 trained at some point at UPCH, and 13 received advanced training abroad. Plotting co-authorships documented the growth of institutional collaborations, the robust links between investigators and some lineages of mentorship. CONCLUSIONS: This analysis suggests that international training of Peruvian physician-scientists who built and sustained longstanding international partnerships with funding accelerated quality research on diseases of local importance. The role of a single research university, UPCH, was critical to advance a culture of biomedical research. Increased funding from the Peruvian Government and its Council for Science, Technology and Innovation will be needed to sustain this growth in the future. Middle-income countries might consider the Peruvian experience where long-term research and training partnerships yielded impressive advances to address key health priorities of the country.


Assuntos
Pesquisa Biomédica , Fortalecimento Institucional , Cooperação Internacional , Universidades , Academias e Institutos , Autoria , Distinções e Prêmios , Bibliometria/história , Bases de Dados Bibliográficas , História do Século XX , História do Século XXI , Humanos , Peru , Publicações/estatística & dados numéricos , Editoração/estatística & dados numéricos , Projetos de Pesquisa , Pesquisadores
15.
Front Physiol ; 10: 651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191349

RESUMO

Background: Prolonged exposure to altitude-associated chronic hypoxia (CH) may cause high-altitude pulmonary hypertension (HAPH). Chronic intermittent hypobaric hypoxia (CIH) occurs in individuals who commute between sea level and high altitude. CIH is associated with repetitive acute hypoxic acclimatization and conveys the long-term risk of HAPH. As nitric oxide (NO) regulates pulmonary vascular tone and asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, we investigated whether ADMA concentration at sea level predicts HAPH among Chilean frontiers personnel exposed to 6 months of CIH. Methods: In this prospective study, 123 healthy army draftees were subjected to CIH (5 days at 3,550 m, 2 days at sea level) for 6 months. In 100 study participants with complete data, ADMA, symmetric dimethylarginine (SDMA), L-arginine, arterial oxygen saturation (SaO2), systemic blood pressure, and hematocrit were assessed at months 0 (sea level), 1, 4, and 6. Acclimatization to altitude was determined using the Lake Louise Score (LLS) and the presence of acute mountain sickness (AMS). Echocardiography was performed after 6 months of CIH in 43 individuals with either good (n = 23) or poor (n = 20) acclimatization. Results: SaO2 acutely decreased at altitude and plateaued at 90% thereafter. ADMA increased and SDMA decreased during the study course. The incidence of AMS and the LLS was high after the first ascent (53 and 3.1 ± 2.4) and at 1 month of CIH (47 and 3.0 ± 2.6), but decreased to 20 and 1.4 ± 2.0 at month 6 (both p < 0.001). Eighteen participants (42%) showed a mean pulmonary arterial pressure (mPAP) >25 mm Hg, out of which 9 (21%) were classified as HAPH (mPAP ≥ 30 mm Hg). ADMA at sea level was significantly associated with mPAP at high altitude in month 6 (R = 0.413; p = 0.007). In ROC analysis, a cutoff for baseline ADMA of 0.665 µmol/L was determined to predict HAPH (mPAP > 30 mm Hg) with a sensitivity of 100% and a specificity of 63.6%. Conclusions: ADMA concentration increases during CIH. ADMA at sea level is an independent predictive biomarker of HAPH. SDMA concentration decreases during CIH and shows no association with HAPH. Our data support a role of impaired NO-mediated pulmonary vasodilation in the pathogenesis of HAPH.

16.
Epigenetics ; 14(1): 1-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30574831

RESUMO

Recent discoveries indicate a genetic basis for high-altitude adaptation among human groups who have resided at high altitude for millennia, including Andeans, Tibetans, and Ethiopians. Yet, genetics alone does not explain the extent of variation in altitude-adaptive phenotypes. Current and past environments may also play a role, and one way to determine the effect of the environment is through the epigenome. To characterize if Andean adaptive responses to high altitude have an epigenetic component, we analyzed DNA methylation of the promoter region of EPAS1 and LINE-1 repetitive element among 572 Quechua individuals from high- (4,388 m) and low-altitude (0 m) in Peru. Participants recruited at high altitude had lower EPAS1 DNA methylation and higher LINE-1 methylation. Altitude of birth was associated with higher LINE-1 methylation, not with EPAS1 methylation. The number of years lived at high altitude was negatively associated with EPAS1 methylation and positively associated with LINE-1 methylation. We found four one-carbon metabolism SNPs (MTHFD1 rs2236225, TYMS rs502396, FOLH1 rs202676, GLDC rs10975681) that cumulatively explained 11.29% of the variation in average LINE-1 methylation. And identified an association between LINE-1 methylation and genome-wide SNP principal component 1 that distinguishes European from Indigenous American ancestry suggesting that European admixture decreases LINE-1 methylation. Our results indicate that both current and lifetime exposure to high-altitude hypoxia have an effect on EPAS1 and LINE-1 methylation among Andean Quechua, suggesting that epigenetic modifications may play a role in high-altitude adaptation.


Assuntos
Doença da Altitude/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Metilação de DNA , Elementos Nucleotídeos Longos e Dispersos/genética , Adaptação Fisiológica/genética , Adolescente , Adulto , Altitude , Doença da Altitude/etnologia , Epigênese Genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único
17.
Front Physiol ; 9: 799, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002630

RESUMO

Background: In chronic hypoxia (CH) and short-term chronic intermittent hypoxia (CIH) exposure, glycemia and insulin levels decrease and insulin sensitivity increases, which can be explained by changes in glucose transport at skeletal muscles involving GLUT1, GLUT4, Akt, and AMPK, as well as GLUT4 translocation to cell membranes. However, during long-term CIH, there is no information regarding whether these changes occur similarly or differently than in other types of hypoxia exposure. This study evaluated the levels of AMPK and Akt and the location of GLUT4 in the soleus muscles of lean rats exposed to long-term CIH, CH, and normoxia (NX) and compared the findings. Methods: Thirty male adult rats were randomly assigned to three groups: a NX (760 Torr) group (n = 10), a CIH group (2 days hypoxia/2 days NX; n = 10) and a CH group (n = 10). Rats were exposed to hypoxia for 30 days in a hypobaric chamber set at 428 Torr (4,600 m). Feeding (10 g daily) and fasting times were accurately controlled. Measurements included food intake (every 4 days), weight, hematocrit, hemoglobin, glycemia, serum insulin (by ELISA), and insulin sensitivity at days 0 and 30. GLUT1, GLUT4, AMPK levels and Akt activation in rat soleus muscles were determined by western blot. GLUT4 translocation was measured with confocal microscopy at day 30. Results: (1) Weight loss and increases in hematocrit and hemoglobin were found in both hypoxic groups (p < 0.05). (2) A moderate decrease in glycemia and plasma insulin was found. (3) Insulin sensitivity was greater in the CIH group (p < 0.05). (4) There were no changes in GLUT1, GLUT4 levels or in Akt activation. (5) The level of activated AMPK was increased only in the CIH group (p < 0.05). (6) Increased GLUT4 translocation to the plasma membrane of soleus muscle cells was observed in the CIH group (p < 0.05). Conclusion: In lean rats experiencing long-term CIH, glycemia and insulin levels decrease and insulin sensitivity increases. Interestingly, there is no increase of GLUT1 or GLUT4 levels or in Akt activation. Therefore, cellular regulation of glucose seems to primarily involve GLUT4 translocation to the cell membrane in response to hypoxia-mediated AMPK activation.

19.
High Alt Med Biol ; 19(3): 221-231, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29782186

RESUMO

Corante, Noemí, Cecilia Anza-Ramírez, Rómulo Figueroa-Mujíca, José Luis Macarlupú, Gustavo Vizcardo-Galindo, Grzegorz Bilo, Gianfranco Parati, Jorge L. Gamboa, Fabiola León-Velarde, and Francisco C. Villafuerte. Excessive erythrocytosis and cardiovascular risk in Andean highlanders. High Alt Med Biol. 19:221-231, 2018.-Cardiovascular diseases are the main cause of death worldwide. Life under high-altitude (HA) hypoxic conditions is believed to provide highlanders with a natural protection against cardiovascular and metabolic diseases compared with sea-level inhabitants. However, some HA dwellers become intolerant to chronic hypoxia and develop a progressive incapacitating syndrome known as chronic mountain sickness (CMS), characterized by excessive erythrocytosis (EE; Hb ≥21 g/dL in men, Hb ≥19 g/dL in women). Evidence from HA studies suggests that, in addition to CMS typical signs and symptoms, these highlanders may also suffer from metabolic and cardiovascular disorders. Thus, we hypothesize that this syndrome is also associated to the loss of the cardiometabolic protection observed in healthy highlanders (HH), and therefore to a higher cardiovascular risk (CVR). The aim of the present work was to evaluate the association between EE and CVR calculated using the Framingham General CVR Score and between EE and CVR factors in male highlanders. This cross-sectional study included 342 males from Cerro de Pasco, Peru at 4340 m (HH = 209, CMS = 133). Associations were assessed by multiple logistic regressions adjusted for potential confounders (BMI, pulse oxygen saturation and age). The adjusted models show that the odds of high CVR (>20%) in highlanders with EE was 3.63 times the odds in HH (CI 95%:1.22-10.78; p = 0.020), and that EE is associated to hypertension, elevated fasting serum glucose, insulin resistance, and elevated fasting serum triglycerides. Our results suggest that individuals who suffer from EE are at increased risk of developing cardiovascular events compared with their healthy counterparts.


Assuntos
Altitude , Pressão Sanguínea , Doenças Cardiovasculares/epidemiologia , Policitemia/epidemiologia , Adolescente , Adulto , Idoso , Glicemia/metabolismo , Doenças Cardiovasculares/fisiopatologia , Estudos Transversais , Humanos , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Policitemia/fisiopatologia , Fatores de Risco , Triglicerídeos/sangue , Adulto Jovem
20.
Front Physiol ; 9: 248, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623044

RESUMO

Background: Living at high altitude or with chronic hypoxia implies functional and morphological changes in the right ventricle and pulmonary vasculature with a 10% prevalence of high-altitude pulmonary hypertension (HAPH). The implications of working intermittently (day shifts) at high altitude (hypobaric hypoxia) over the long term are still not well-defined. The aim of this study was to evaluate the right cardiac circuit status along with potentially contributory metabolic variables and distinctive responses after long exposure to the latter condition. Methods: A cross-sectional study of 120 healthy miners working at an altitude of 4,400-4,800 m for over 5 years in 7-day commuting shifts was designed. Echocardiography was performed on day 2 at sea level. Additionally, biomedical and biochemical variables, Lake Louise scores (LLSs), sleep disturbances and physiological variables were measured at altitude and at sea level. Results: The population was 41.8 ± 0.7 years old, with an average of 14 ± 0.5 (range 5-29) years spent at altitude. Most subjects still suffered from mild to moderate symptoms of acute mountain sickness (mild was an LLS of 3-5 points, including cephalea; moderate was LLS of 6-10 points) (38.3%) at the end of day 1 of the shift. Echocardiography showed a 23% mean pulmonary artery pressure (mPAP) >25 mmHg, 9% HAPH (≥30 mmHg), 85% mild increase in right ventricle wall thickness (≥5 mm), 64% mild right ventricle dilation, low pulmonary vascular resistance (PVR) and fairly good ventricle performance. Asymmetric dimethylarginine (ADMA) (OR 8.84 (1.18-66.39); p < 0.05) and insulin (OR: 1.11 (1.02-1.20); p < 0.05) were associated with elevated mPAP and were defined as a cut-off. Interestingly, the correspondence analysis identified association patterns of several other variables (metabolic, labor, and biomedical) with higher mPAP. Conclusions: Working intermittently at high altitude involves a distinctive pattern. The most relevant and novel characteristics are a greater prevalence of elevated mPAP and HAPH than previously reported at chronic intermittent hypobaric hypoxia (CIHH), which is accompanied by subsequent morphological characteristics. These findings are associated with cardiometabolic factors (insulin and ADMA). However, the functional repercussions seem to be minor or negligible. This research contributes to our understanding and surveillance of this unique model of chronic intermittent high-altitude exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...