Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vet Sci ; 21(1): e7, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31940686

RESUMO

Aging triggers cellular and molecular alterations, including genomic instability and organ dysfunction, which increases the risk of disease in mammals. Recently, due to the markedly growing number of aging dogs in the world, as much as 49% in total number of pet dogs, it is necessary to improve and maintain their quality of life by understanding of the biological effects of aging. Therefore, the aim of this study was to determine specific biomarkers in aging dogs as a means of defining a set of hematological/biochemical biomarkers that influence the aging process. Blood samples were collected from younger (1-3 years) and older (7-10 years) dogs of middle/large size. The hematological/biochemistry analysis was performed to evaluate parameters significantly associated with age. Enzyme-linked immunosorbent assay was used to target growth hormone (GH)/insulin growth factor-1 (IGF-1), one of the main regulators of the aging process. Declining levels of total protein and increased levels of glucose in young dogs was observed regardless of their body size. Notably, a significantly high concentration of GH and IGF-1 in the younger dogs compared to the older dogs was found in middle/large-sized dogs. GH and IGF-1 were also found at significantly high levels in large-sized dogs compared to middle-sized dogs, suggesting a similar trend to that of elderly humans. Consequently, glucose, total protein, GH, and IGF-1 were identified as potential biomarkers for regulating the aging process in large/middle-sized dogs. These findings provide an invaluable insight into the mechanism of aging for the field of aging research.

2.
J Cell Physiol ; 235(2): 1386-1404, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31338842

RESUMO

Current studies indicate that application of oviduct cells (OCs) in in vitro system create microenvironment similar to the in vivo conditions by releasing multiple growth factors which has beneficial effects on the development of cumulus-oocyte complexes and embryos. In particular, recent evidence with a coculture system indicates that there is a reciprocal relationship between canine OCs and cumulus cells and that oviductal secretions can promote changes in cellular protein/gene expression. Despite the fact that OCs respond to cumulus cells, a clear understanding of the mechanism by which the components released from OCs that play a role in modulating the biological function of cumulus cells is still elusive. Therefore, we hypothesized that exosomes derived from OCs (OC-Exo), which efficiently mediate cellular communication by transferring their molecular cargo to recipient cells, could be key modulators of the cross-talk with cumulus cells. We aimed to characterize OC-Exo and decipher their physiological effects on cumulus cells via the epidermal growth factor receptor/mitogen-activated protein kinase (EGFR/MAPK) pathway, which is one of the prerequisite pathways for cell development. Exposure of OC-Exo improved physiological cumulus cell condition including cell concentration, viability, and proliferation rate could reduce the accumulation of reactive oxygen species and the apoptotic rate. Moreover, exosomes could enhance the messenger RNA transcript and protein levels related to EGFR signaling in cumulus cells. The present study provides the first evidence that OC-Exo effectively enhance the physiological condition of cumulus cells exposed to GW4869 or Gefitinib via the EGFR/MAPK signaling pathway and this could be the primary mediators of molecular interactions among cumulus cells and shedding light on the role of exosomes in cumulus cells might permit improvement of oocyte and embryo development in vitro.

3.
J Mol Endocrinol ; 63(3): 175-185, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31408847

RESUMO

Oxidative stress (OS) is a major problem during in vitro culture of embryos. Numerous studies have shown that melatonin, which is known to have antioxidant properties, prevents the occurrence of OS in embryos. However, the molecular mechanisms by which melatonin prevents OS in embryos are still unclear. The present study suggests a possible involvement of the nuclear factor erythroid 2-related factor 2/antioxidant-responsive element (Nrf2/ARE) signaling pathway, which is one of the prominent signals for OS prevention through Nrf2 activation, connecting melatonin, OS prevention and porcine embryonic development. The aim of this study was to investigate the effects of melatonin (10-7 M) on porcine embryonic development via the Nrf2/ARE signaling pathway; brusatol (50 nM; Nrf2 specific inhibitor) was used to validate the mechanism. Treatment of porcine embryo with melatonin significantly increased formation rates of blastocysts and their total cell numbers and also upregulated the expression of Nrf2/ARE signaling and apoptosis-related genes (MT2, NRF2, UCHL, HO-1, SOD1 and BCL-2). Furthermore, the expression of proteins (NRF2 and MT2) was also upregulated in the melatonin-treated group. Concomitantly, brusatol significantly inhibited these effects, upregulating the expression of KEAP1 and BAX, including the expression level of KEAP1 protein. These results provide evidences that melatonin prevents OS through Nrf2/ARE signaling pathway in porcine in vitro fertilization -derived embryos.

4.
Mol Reprod Dev ; 86(8): 1013-1022, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31166644

RESUMO

Aberrant epigenetic reprogramming is known to be a major cause of inefficient somatic cell nuclear transfer (SCNT) in pigs, and use of epigenetic modification agents, such as DNA methyltransferase inhibitors (DNMTis), is a promising approach for enhancing SCNT efficacy. Here, we attempted to find the optimal condition of zebularine (Zb), a DNMTi, treatment on porcine SCNT embryos during in vitro culture (IVC). As results, treatment with 5 nM Zb for 24 hr showed the highest rate of embryo development to blastocyst compared to other groups (p < .05). Also, the relative intensities of global DNA methylation levels of anti-5-methylcytosine in pseudo-pronuclear (PNC), 2-cell and 4-cell stages were significantly lower in the Zb-treated group (p < .05), however, changes in methylation levels of centromeric satellite repeat were noted only in PNC and blastocyst stages. In addition, significant positive alterations in the relative expression of genes related to pluripotency (OCT4 and SOX2), histone acetylation (HAT1, HDAC1, HDAC2, and HDAC3) and DNA methylation (DNMT1 and DNMT3a) were observed compared to the control (p < .05). In conclusion, we found that Zb could modify DNA methylation levels in the early stages of porcine SCNT embryos and promote their developmental competence.

5.
Cell Transplant ; 28(7): 943-954, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31018670

RESUMO

Endothelial progenitor cells (EPCs) have been applied for cell therapy because of their roles in angiogenesis and neovascularization in ischemic tissue. However, adverse responses caused by EPC therapy have not been fully investigated. In this study, a human peripheral blood sample was collected from a healthy donor and peripheral blood mononuclear cells were separated using Ficoll-Hypaque. There were four experimental groups: 10 ml saline infusion group (injection rate; 3 ml/min), 10 ml saline bolus group (injection rate; 60 ml/min), 10 ml EPCs infusion group (2 x 105 cells/ml, injection rate; 3 ml/min), 10 ml EPCs bolus group (2 × 105 cells/ml, injection rate; 60 ml/min). Clinical assessment included physical examination and laboratory examination for intravenous human EPC transplantation in dogs. The results revealed no remarkable findings in vital signs among the dogs used. In blood analysis, platelet counts in saline infusion groups were significantly higher than in the EPC groups within normal ranges, and no significant differences were observed except K+, Cl- and blood urea nitrogen/urea. In ELISA assay, no significant difference was observed in serum tumor necrosis factor alpha. The serum concentration of vascular endothelial growth factor was significantly higher in EPC groups than in saline groups, and interleukin 10 was significantly up-regulated in the EPC infusion group compared with other groups. In conclusion, we demonstrated that no clinical abnormalities were detected after intravenous transplantation of human EPCs in dogs. The transplanted xenogenic EPCs might be involved in anti-inflammatory and angiogenic functions in dogs.

6.
J Reprod Dev ; 65(3): 259-265, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30905887

RESUMO

This study was carried out to examine the effects of manganese (Mn) on the developmental competence of porcine oocytes during in vitro maturation (IVM) after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Upon treatment of porcine oocytes with different concentrations (0, 3, 6, and 12 ng/ml) of Mn during IVM, PA was performed to determine the optimum concentration. Following PA, the rate of blastocyst formation was higher significantly in treated porcine oocytes at 6 ng/ml of Mn than in other groups (P < 0.05). However, there was no substantial difference in the cleavage rate and total blastocyst cell numbers among all groups. SCNT was performed using the optimal concentration of Mn from PA, which showed an improved blastocyst formation rate in treated oocytes compared to that in control group (P < 0.05). However, the cleavage rate and total cell numbers per blastocyst were not different between the control and the Mn treated groups after SCNT. Additionally, oocyte nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels were assessed. There was no significant difference observed in nuclear maturation among all the groups. However, enhanced intracellular GSH levels while lower levels of ROS were seen in the Mn treated group compared to the control group (P < 0.05). Thus, these results indicate that Mn supplementation can improve the developmental competence of porcine PA and SCNT embryos by increasing GSH and decreasing ROS levels.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Manganês/farmacologia , Técnicas de Transferência Nuclear/veterinária , Oócitos/citologia , Animais , Antioxidantes/metabolismo , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Técnicas de Cultura Embrionária/veterinária , Feminino , Glutationa/metabolismo , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Oogênese , Espécies Reativas de Oxigênio/metabolismo , Suínos
7.
PLoS One ; 14(3): e0212410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30865667

RESUMO

Shark meat is consumed as a food source worldwide, especially in Asian countries. However, since sharks are apex predators in the ocean food chain, they are prone to bioaccumulation of heavy metals. More than 100 million sharks are caught annually for human consumption, and the safety of shark meat cannot be overemphasized. Here, we examined heavy metal concentration in the muscle tissue of 6 shark species including 3 migratory species (Carcharhinus brachyurus, Carcharhinus obscurus, and Isurus oxyrinchus) and 3 local species (Triakis scyllium, Mustelus manazo, and Cephaloscyllium umbratile) from fish markets in Jeju Island, Republic of Korea. The concentrations of 11 heavy metals (Cr, Fe, Cu, Zn, As, Se, Cd, Sn, Sb, Pb, and Hg) and MeHg were analyzed. The result showed that the average concentrations of all metals, except for that of As, were below the regulatory maximum limits of many organizations, including the Codex standard. Hg and MeHg were significantly correlated with body length, body weight, and age, and the concentration of Hg was expected to exceed the limit in C. brachyurus with a body length or weight of over 130 cm or 25 kg, respectively. Our results indicate that shark meat can expose consumers to a high level of As and that copper sharks bigger than the predicted size should be avoided for excessive Hg. Considering these findings, a detailed guideline on consumption of meat of different shark species should be suggested based on further investigation.


Assuntos
Contaminação de Alimentos/análise , Carne/análise , Carne/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Tubarões/metabolismo , Animais , Arsênico/análise , Arsênico/toxicidade , Cobre/análise , Cobre/toxicidade , Feminino , Cadeia Alimentar , Inocuidade dos Alimentos , Humanos , Ilhas , Masculino , Mercúrio/análise , Mercúrio/toxicidade , República da Coreia , Especificidade da Espécie
8.
Cell Reprogram ; 21(1): 26-36, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30735078

RESUMO

The potential of induced pluripotent stem (iPS) cells, which have self-renewal ability and can differentiate into three germ layers, led us to hypothesize that iPS cells in pigs can be useful and suitable source for producing transgenic pigs. In this study, we generated iPS-like cells using doxycycline-inducible piggyBac (PB) expression vectors encoding porcine 4 transcription factors. After transfection, transfected cells were cultured until the formation of outgrowing colonies taking least of 7-10 days. The iPS-like cells demonstrated pluripotent characteristics such as self-renewal, high proliferation, expression of pluripotent markers, and aggregation ability. The embryo development through somatic cell nuclear transfer (SCNT), cleavage rate, and blastocyst formation rate did not show any significant differences. However, the total cell number of blastocysts was significantly increased with the established cell line. In conclusion, the iPS-like cell line, generated from porcine transcriptional factors using the PB transposon system, demonstrated pluripotency with the capacity for unlimited self-renewal, and could be used as donor cells to produce cloned embryos by SCNT. These cells will be suitable for gene modification and would contribute to the stability or safety of pig models in biomedical research.


Assuntos
Blastocisto/citologia , Técnicas de Cultura de Células , Clonagem de Organismos , Regulação da Expressão Gênica no Desenvolvimento , Suínos/embriologia , Animais , Animais Geneticamente Modificados , Blastocisto/fisiologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Desenvolvimento Embrionário , Fibroblastos , Técnicas de Transferência Nuclear/veterinária , Células-Tronco Pluripotentes/citologia , Transfecção
9.
J Vet Sci ; 20(1): 79-86, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30481988

RESUMO

The objective of this study was to analyze the protective effects of iodixanol on dog spermatozoa during cryopreservation. The optimal concentration of iodixanol, 1.5%, was determined using fresh spermatozoa and was applied in the following experiments. The 1.5% iodixanol group showed significantly increased sperm motility from that in the control (p < 0.05). Lower mitochondrial reactive oxygen species (ROS) modulator (ROMO1) and pro-apoptotic gene (BAX) expressions, together with higher expressions of protamine-2 (PRM2), protamine-3 (PRM3), anti-apoptotic B-cell lymphoma-2 (BCL2), and sperm acrosome associated-3 (SPACA3) genes were detected in the iodixanol-treated group. In addition, decreased protamine deficiency and cryocapacitation were observed in the treatment group. Our results show that supplementation with 1.5% iodixanol is ideal for reducing production of ROS and preventing detrimental effects during the canine sperm cryopreservation process, effects manifested as increased motility and reduced cryocapacitation in frozen-thawed spermatozoa.


Assuntos
Criopreservação/veterinária , Dano ao DNA/efeitos dos fármacos , Protaminas/metabolismo , Substâncias Protetoras/farmacologia , Preservação do Sêmen/veterinária , Espermatozoides/fisiologia , Ácidos Tri-Iodobenzoicos/farmacologia , Animais , Cães , Relação Dose-Resposta a Droga , Masculino , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/efeitos dos fármacos
10.
J Cell Physiol ; 234(4): 4030-4043, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30252133

RESUMO

It has become increasingly recognized that coculture has a beneficial effect on the in vitro maturation (IVM) of oocytes and embryo development in many species. However, these effects of coculture on IVM have been documented only for their positive conditioning roles without any evidence on the precise mechanisms underlying the action of coculture systems on the development of cumulus oocyte complexes (COCs). It has been suggested that the epidermal growth factor receptor (EGFR) signaling pathway is important for development of COCs, mediated by several epidermal growth factor (EGF)-like proteins with downstream mitogen-activated protein kinase 1/3 signaling. Therefore, we hypothesized that canine oviduct cells (OCs) in a coculture system, which shows improvement of oocyte quality in several species, are associated with EGFR signaling by exposure to progesterone (P4; imitating its production before ovulation and its continuous increase while oocytes reside in the oviduct to complete maturation in dogs). We designed three experimental groups: control, OCs coculture exposed to P4, and OCs coculture without exposure to P4. The result showed that the OCs coculture exposed to P4 strongly expressed EGF-like proteins and significantly improved COCs and subsequent embryo development. Furthermore, the expression of EGFR-related genes in cumulus cells and GDF9 and BMP15 in oocytes was upregulated in the P4-treated group. This study provides the first evidence that OCs exposed to P4 can induce strong expression of EGF-like proteins, and OCs effectively mediate improved porcine COCs development and subsequent embryo development by altering EGFR signaling related mRNA expression.

11.
Transgenic Res ; 28(1): 91-102, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552552

RESUMO

Herein, we successfully generated transgenic pigs expressing both soluble human tumor necrosis factor receptor I IgG1-Fc (shTNFRI-Fc) and human hemagglutinin (HA)-tagged-human heme oxygenase-1 (hHO-1) without Gal epitope. Healthy cloned pigs were produced by somatic cell nuclear transfer (SCNT) using the genetically modified cells. The genetic disruption of the GGTA1 genes and absence of expression of BS-IB4 lectin in tail-derived fibroblast of the SCNT-generated piglets were successfully confirmed. The expression of shTNFRI-Fc and HAhHO-1 was fully identified with protective effect against oxidative stress and apoptosis stimulation. Antibody-mediated complement-dependent cytotoxicity assay for examining the immuno-reactivity of transgenically derived pig cells showed that pigs lacking GGTA1 with the expression of double genes reduce the humoral barrier to xenotransplantation, more than pigs simply expressing double genes and the wild type. Through this approach, rapid production of a pig strain deficient in various genes may be expected to be applicable for xenotransplantation research without extensive breeding protocols.


Assuntos
Animais Geneticamente Modificados/genética , Galactosiltransferases/genética , Heme Oxigenase-1/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Animais , Apoptose/genética , Epitopos/genética , Epitopos/imunologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Heme Oxigenase-1/imunologia , Humanos , Técnicas de Transferência Nuclear , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Suínos , Transplante Heterólogo
12.
J Reprod Dev ; 65(2): 103-112, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30587665

RESUMO

Recently, the modification of the epigenetic status of somatic cell nuclear transfer (SCNT) embryos by treatment with histone deacetylase inhibitors (HDACis) has made it possible to alter epigenetic traits and improve the developmental competence of these embryos. In the current study, we examined the effects of an HDACi, quisinostat (JNJ), on the in vitro development of porcine cloned embryos and their epigenetic nuclear reprogramming status. SCNT embryos were cultured under various conditions, and we found that treatment with 100 nM JNJ for 24 h post activation could improve blastocyst formation rates compared to the control (P < 0.05). Therefore, this was chosen as the optimal condition and used for further investigations. To explore the effects of JNJ on the nuclear reprogramming of early stage embryos and how it improved cloning efficiency, immunofluorescence staining and quantitative real-time PCR were performed. From the pseudo-pronuclear to 2-cell stages, the levels of acetylation of histone 3 at lysine 9 (AcH3K9) and acetylation of histone 4 at lysine 12 (AcH4K12) increased, and global DNA methylation levels revealed by anti-5-methylcytosine (5-mC) antibody staining were decreased in the JNJ-treated group compared to the control (P < 0.05). However, JNJ treatment failed to alter AcH3K9, AcH4K12, or 5-mC levels at the 4-cell embryo stage. Moreover, JNJ treatment significantly upregulated the expression of the development-related genes OCT4, SOX2, and NANOG, and reduced the expression of genes related to DNA methylation (DNMT1, DNMT3a, and DNMT3b) and histone acetylation (HDAC1, HDAC2, and HDAC3). Together, these results suggest that treatment of SCNT embryos with JNJ could promote their developmental competence by altering epigenetic nuclear reprogramming events.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Animais , Células Cultivadas , Reprogramação Celular/genética , Clonagem de Organismos/veterinária , Metilação de DNA/efeitos dos fármacos , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Feminino , Histonas/metabolismo , Masculino , Técnicas de Transferência Nuclear/veterinária , Suínos
13.
Anim Cells Syst (Seoul) ; 22(2): 92-99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30460085

RESUMO

Acute humoral xenograft rejection (AHXR), characterized by thrombin generation and endothelial cell activation, should be overcome for the success of xenotransplantation. Fibrinogen-like protein 2 (fgl2) expressed on endothelial cells can convert prothrombin to thrombin directly, which indicates that the induced fgl2 expression in activated endothelial cells can contribute to thrombosis. In xenotransplant condition, the interaction between human CD40L and porcine endothelial CD40 can activate endothelial cells. In this study, we investigated the effect of endothelial cell activation through the interaction between human CD40L and porcine CD40 on fgl2 expression and its function as a direct prothrombinase. We found that CD40 stimulation up-regulated fgl2 expression as well as its enzymatic activity in porcine endothelial cells. Moreover, functional studies using knock-down system showed that the major factor converting human prothrombin to thrombin is fgl2 protein expressed on porcine endothelial cells. Overall, this study demonstrates that fgl2 expression can be induced by xenogeneic CD40 signal on endothelial cells and contribute to thrombin generation.

14.
Reprod Domest Anim ; 53 Suppl 3: 133-138, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30474338

RESUMO

Since the generation of world's first cloned dog, Snuppy, in 2005, somatic cell nuclear transfer (SCNT) in dogs has been widely applied for producing several kinds of dogs with specific objectives. Previous studies have demonstrated that cloned dogs show normal characteristics in growth, blood parameters and behavioural aspect. Also, canine SCNT technique has been applied to propagate working dogs with excellent abilities in fields such as assistance of disabled people, drugs detection and rescue activity. Because dogs have similar habituation properties and share many characteristics including anatomic and physiological aspects with humans, they are also primary candidates for human disease models. Recently, transgenic dogs that express red fluorescent protein gene constitutively and green fluorescent protein gene conditionally have been generated. In addition, transgenic dogs with an overexpression of peroxisome proliferator-activated receptor-alpha in specific muscles were generated to enhance physical performance. In 2017, Snuppy was recloned with markedly increased pregnancy and delivery rates compared to the statistics from when Snuppy was first cloned. Such striking improvements in the cloning of dogs using SCNT procedures suggest that dog cloning could be applied in many fields of biomedical science for human diseases research, and the application of cloning is no longer science fiction.


Assuntos
Clonagem de Organismos/veterinária , Cães , Animais , Animais Geneticamente Modificados , Técnicas de Transferência Nuclear/veterinária
15.
J Vet Med Sci ; 80(12): 1905-1913, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30369585

RESUMO

Stem cell therapy has been proposed to restore the function and structure of injured tissues. In the present study, we investigated the ability of human endothelial progenitor cells (hEPCs) to attenuate ovarian aging and dysfunction. Female ICR mice aged 4 and 6 months were injected with cultured hEPCs. Cultured hEPCs were injected intravenously twice with 5 × 104 cells with a 4 day interval. After pregnant mare serum gonadotropin and human chorionic gonadotropin stimulation, oocytes and ovaries of aged mice were collected, cumulus-free oocytes were activated by SrCl2 and gene expression levels related to inflammation, apoptosis, follicle development and endoplasmic reticulum (ER) stress in ovaries were compared. Administration of hEPCs attenuated the level of inflammatory cytokines and adverse apoptotic factor, as well as reducing ER stress in the ovaries. Increased cleavage and blastocyst formation rates and cell numbers in blastocysts from hEPCs-treated aged mice vs. same aged control mice demonstrated a protective function of hEPCs against reproductive aging. Based on these data, we suggest that treatment with hEPCs attenuates reproductive aging and dysfunction potentially via regulation of inflammation, apoptosis and ER stress.


Assuntos
Envelhecimento , Apoptose , Desenvolvimento Embrionário , Estresse do Retículo Endoplasmático , Células Progenitoras Endoteliais/transplante , Inflamação/prevenção & controle , Ovário/fisiologia , Envelhecimento/genética , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Fertilidade , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Folículo Ovariano/crescimento & desenvolvimento , Ovário/metabolismo , Partenogênese , Transplante Heterólogo
16.
Int J Mol Sci ; 19(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861447

RESUMO

Melatonin is a multifunctional molecule with numerous biological activities. The fact that melatonin modulates the functions of porcine granulosa cells via the MT2 receptor suggests the possibility of MT2 receptor-mediation for melatonin to promote cumulus expansion of porcine cumulus-oocyte complexes (COCs). Therefore, we investigated the presence of MT2 in porcine COCs, and the effects of melatonin with or without selective MT2 antagonists (luzindole and 4-P-PDOT) on this process; COCs underwent in vitro maturation culturing with six different conditions (control, melatonin, luzindole, 4-P-PDOT, melatonin + luzindole or melatonin + 4-P-PDOT). Cumulus expansion, oocyte nuclear maturation, and subsequent embryo development after parthenogenetic activation (PA) were evaluated. In experiment 1, MT2 was expressed in both oocytes and cumulus cells. In experiment 2, melatonin significantly increased the proportion of complete cumulus expansion (degree 4), which was inhibited by simultaneous addition of either luzindole or 4-P-PDOT. A similar pattern was observed in the expression of genes related to cumulus expansion, apoptosis, and MT2. In experiment 3, no significant difference was observed in immature, degenerate, and MII oocyte rates among the groups. In experiment 4, melatonin significantly increased blastocyst formation rates and total blastocyst cell numbers after PA, but these effects were abolished when either luzindole or 4-P-PDOT was added concomitantly. In conclusion, our results indicate that the MT2 receptor mediated the stimulatory effects of melatonin on porcine cumulus expansion and subsequent embryo development.


Assuntos
Células do Cúmulo/metabolismo , Melatonina/metabolismo , Oogênese , Receptor MT2 de Melatonina/metabolismo , Transdução de Sinais , Animais , Células do Cúmulo/fisiologia , Feminino , Sus scrofa/metabolismo , Sus scrofa/fisiologia
17.
J Vet Sci ; 19(5): 585-591, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29929355

RESUMO

Dogs serve human society in various ways by working at tasks that are based on their superior olfactory sensitivity. However, it has been reported that only about half of all trained dogs may qualify as working dogs through conventional breeding management because proper temperament and health are needed in addition to their innate scent detection ability. To overcome this low efficiency of breeding qualified working dogs, and to reduce the enormous costs of maintaining unqualified dogs, somatic cell nuclear transfer has been applied in the propagation of working dogs. Herein, we review the history of cloning working dogs and evaluate the health development, temperaments, and behavioral similarities among the cloned dogs. We also discuss concerns about dog cloning including those related to birth defects, lifespan, and cloning efficiency.


Assuntos
Clonagem de Organismos/veterinária , Cães/psicologia , Técnicas de Transferência Nuclear/veterinária , Temperamento , Animais , Comportamento Animal
18.
Theriogenology ; 115: 57-64, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29709724

RESUMO

The paracrine interactions between cumulus-oocyte complexes (COCs) and follicular somatic cells during in vitro maturation (IVM) were investigated. To optimize IVM conditions, many studies have applied exogenous growth factors and cell feeding/co-culture systems using various cell types to replicate the natural follicular microenvironment during IVM. A potential candidate as cell feeders is adipose-derived stem cells (ASCs) which secrete high levels of growth factors that have roles in oocyte maturation. However, the cell donor's age should be considered because biological aging also occurs in stem cells. In the present study, the contributions of ASCs from young and old donors on an IVM co-culture system were analyzed by comparing the oocyte maturation rate, cumulus expansion index, preimplantation development after parthenogenetic activation (PA), and expression of growth factor signaling genes related to oocyte maturation in ASCs, oocytes and cumulus cells under the same culture conditions. Our study demonstrated that the confluence, viability and cell size of ASCs between young and old donors were not significantly different and only the Fibroblast Growth Factor 2 (FGF2) signaling gene showed higher expression in ASCs from young donors. The oocyte maturation rate in the young donor group (87.8 ±â€¯1.2%) was significantly higher than in the old donor (81.1 ±â€¯2.1%) and control (73.8 ±â€¯2.1%) groups. After IVM, most gene expression levels in oocytes and cumulus cells in the co-culture groups were higher than in the control but the apoptotic ratios were reduced. The blastocyst development rates were not different between the young and old donor groups (23.9 ±â€¯1.3% and 20.7 ±â€¯0.8%, respectively) but the percentages were higher in both groups compared to the control group (16.4 ±â€¯1.2%). A similar pattern was also found for blastocyst total cell numbers in that the young donor group (87.5 ±â€¯5.2 cells) was not different than the old donor group (77.5 ±â€¯3.4 cells) but both groups exhibited higher number of cells compared with the control group (57.9 ±â€¯6.0 cells, p < .05). Our study strongly suggested that the co-culture IVM system with ASCs greatly improved the maturation and development rates of porcine oocytes. Moreover, ASCs from young donors more effectively supported porcine oocyte maturation than those from old donors although this difference did not translate into improved developmental competence.


Assuntos
Adipócitos , Envelhecimento/fisiologia , Técnicas de Cocultura/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Células-Tronco/fisiologia , Sus scrofa , Animais , Apoptose , Blastocisto/fisiologia , Células do Cúmulo/fisiologia , Feminino , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/crescimento & desenvolvimento , Oócitos/fisiologia , Doadores de Tecidos
19.
J Reprod Dev ; 64(3): 277-282, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29695650

RESUMO

This study was conducted to investigate whether the treatment of dog to pig interspecies somatic cell nuclear transfer (iSCNT) embryos with a histone deacetylase inhibitor, to improve nuclear reprogramming, can be applied to dog SCNT embryos. The dog to pig iSCNT embryos were cultured in fresh porcine zygote medium-5 (PZM-5) with 0, 1, or 10 µM suberoylanilide hydroxamic acid (SAHA) for 6 h, then transferred to PZM-5 without SAHA. Although there were no significant differences in cleavage rates, the rates of 5-8-cell stage embryo development were significantly higher in the 10 µM group (19.5 ± 0.8%) compared to the 0 µM groups (13.4 ± 0.8%). Acetylation of H3K9 was also significantly higher in embryos beyond the 4-cell stage in the 10 µM group compared to the 0 or 1 µM groups. Treatment with 10 µM SAHA for 6 h was chosen for application to dog SCNT. Dog cloned embryos with 0 or 10 µM SAHA were transferred to recipients. However, there were no significant differences in pregnancy and delivery rates between the two groups. Therefore, it can be concluded that although porcine oocytes support nuclear reprogramming of dog fibroblasts, treatment with a histone deacetylase inhibitor that supports nuclear reprogramming in dog to pig iSCNT embryos was not sufficient for reprogramming in dog SCNT embryos.


Assuntos
Clonagem de Organismos/veterinária , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Animais , Reprogramação Celular/efeitos dos fármacos , Clonagem de Organismos/métodos , Cães , Técnicas de Cultura Embrionária/métodos , Suínos , Vorinostat
20.
Theriogenology ; 114: 191-198, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29653386

RESUMO

Resveratrol and melatonin are known for their antioxidant properties and have various biological activities. The fact that they exhibit possible synergistic effects in phytomedicine researches suggests the use of a combination of these agents to promote porcine in vitro maturation (IVM) of oocytes. Therefore, we investigated the effects of resveratrol and/or melatonin on this process; cumulus-oocyte complexes underwent IVM culture with four different conditions (control, resveratrol, melatonin or their combination). Cumulus expansion, oocyte nuclear maturation and subsequent embryo development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) were evaluated. In experiment 1, all treatment groups significantly increased the proportion of complete cumulus expansion (degree 4) compared to the control, showing no difference among the treatment groups (P = 0.30). In experiment 2, oocytes matured with resveratrol and the combination had significantly higher metaphase-II (MII) rates than the control and melatonin groups, showing the highest (P < 0.05) MII rates in the combination group. In experiment 3, all treatment groups significantly increased blastocyst formation rates and total blastocyst cell numbers after PA compared to the control, but especially the combination showed the highest (P < 0.05) total cell numbers. In experiment 4, we selected the combination as the optimal condition and used this IVM system prior to SCNT. The combination treatment showed a significant (P < 0.05) increase in blastocyst formation rate and total cell numbers after SCNT. In conclusion, our results suggest that the combination of resveratrol and melatonin supported a synergistic increase in oocyte nuclear maturation and total cell numbers of PA blastocysts and improved the development of SCNT embryos.


Assuntos
Técnicas de Maturação in Vitro de Oócitos/veterinária , Melatonina/farmacologia , Oócitos/efeitos dos fármacos , Estilbenos/farmacologia , Suínos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Sinergismo Farmacológico , Quimioterapia Combinada , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Melatonina/administração & dosagem , Melatonina/farmacocinética , Partenogênese , Resveratrol , Estilbenos/administração & dosagem , Estilbenos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA