Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Bioresour Technol ; 376: 128817, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868426

RESUMO

In this study, Aurantiochytrium sp. CJ6 was cultivated heterotrophically on a waste resource, sorghum distillery residue (SDR) hydrolysate without adding any nitrogen sources. Mild sulfuric acid treatment released sugars that supported the growth of CJ6. Optimal operating parameters (salinity, 2.5%; pH, 7.5; with light exposure) determined using batch cultivation attained biomass concentration and astaxanthin content of 3.72 g/L and 69.32 µg/g dry cell weight (DCW), respectively. Using continuous-feeding fed-batch (CF-FB) fermentation, the biomass concentration of CJ6 increased to 6.3 g/L with biomass productivity and sugar utilization rate of 0.286 mg/L/d and 1.26 g/L/d, respectively. Meanwhile, CJ6 obtained maximum astaxanthin content (93.9 µg/g DCW) and astaxanthin concentration (0.565 mg/L) after 20-day cultivation. Thus, the CF-FB fermentation strategy seems to have a high potential for the cultivation of thraustochytrids to produce the high-value product (astaxanthin) using SDR as the feedstock to achieve circular economy.

2.
Bioresour Technol ; 376: 128858, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36907225

RESUMO

A sequential anaerobic digestion and phycoremediation process was employed to recover nutrients and remove pollutants from dairy wastewater (DW), while simultaneously producing biomethane and biochemicals. Anaerobic digestion of 100% DW achieved a methane content and production rate of 53.7% and 0.17 L/L/d, respectively. This was accompanied by the removal of 65.5% chemical oxygen demand (COD), 86% total solid (TS), and 92.8% volatile fatty acids (VFAs). The anaerobic digestate was then used to grow Chlorella sorokiniana SU-1. Using 25% diluted digestate as the medium, SU-1 could reach 4.64 g/L biomass concentration, with total nitrogen (TN), total phosphorus (TP) and COD removal efficiencies of 77.6%, 87.1% and 70.4%, respectively. The obtained microalgal biomass (contained 38.5% carbohydrates, 24.9% proteins, 8.8% lipids) was used to co-digest with DW, resulting in good methane production performance. Co-digestion with 25% (w/v) algal biomass obtained a higher CH4 content (65.2%) and production rate (0.16 L/L/d) than other ratios.

3.
Bioresour Technol ; 373: 128742, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791977

RESUMO

The flourishment of anaerobic digestion emphasizes the importance of digestate valorization, which is essential in determining the benefits of the anaerobic digestion process. Recently the perception of digestate gradually shifted from waste to products to realize the concept of circular economy and maximize the benefits of digestate valorization. Land application of digestate should be the simplest way for digestate valorization, while legislation restriction and environmental issues emphasize the necessity of novel valorization methods. This review then outlined the current methods for solid/liquid digestate valorization, nutrient recovery, microalgae cultivation, and integration with biological and thermochemical processes. The novel valorization routes proposed were summarized, with their challenges and prospects being discussed. Integrating anaerobic digestion with thermochemical methods such as hydrothermal carbonization should be a promising strategy due to the potential market value of hydrochar/biochar-derived products.


Assuntos
Agricultura , Microalgas , Anaerobiose , Nutrientes , Biocombustíveis
4.
Environ Res ; 223: 115462, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773643

RESUMO

To explore an effective, environmental, rapid operating method to repair black and odor water bodies, water samples and sediment samples collected from a polluted municipal lake in Daqing, China, were directly tested in transparent barrels (10 L). Seven groups of optimizing parameters obtained the optimal operating method, and the max removal rate of COD, NH4+-N, NO3--N, and TP were achieved (89.18%, 59.65%, 69.50%, and 75.61%) by using aquatic plants with plant growth-promoting Rhizobacteria (PGPR). To further verify the method's effectiveness, lager scale tests were conducted based on a water tank (216 L), and similar removal rates were obtained within 48 h. The water quality index and microbial community structure analysis revealed the mechanisms of the interaction among plants, microorganisms, and pollutants and the main biological processes during water body remediation. Finally, the cost of water body remediation by using this method was estimated.


Assuntos
Lagos , Odorantes , Biodegradação Ambiental , Qualidade da Água , Plantas , Nitrogênio/análise
5.
Environ Res ; 224: 115520, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36842698

RESUMO

This study discussed the adsorption of mixed heavy metal ions (Cu2+, Co2+, Pb2+) and phosphate ions by ten pristine biochars and those with precipitated Mg/Al layered double hydroxide (LDH). The pristine biochars have adsorption capacities of 6.9-13.4 mg/g for Cu2+, 1.1-9.7 mg/g for Co2+, 7.8-20.7 mg/g for Pb2+, and 0.8-4.9 mg/g for PO43-. The LDH-biochars have markedly increased adsorption capacities of 20.4-25.8 mg/g for Cu2+, 8.6-15.0 mg/g for Co2+, 26.5-40.4 mg/g for Pb2+ with mixed metal ions, and 13.0-21.8 mg/g for PO43-. Part of the Mg ions but Al ions are released from the LDH-biochars during adsorption, counting less than 7.2% of the adsorbed ions. The pristine biochars have specific adsorption sites for Cu2+ and Co2+, separate Pb2+ sites related to ether groups on biochar, and areal-dependent sites for PO43-. There is no universal adsorption mechanism corresponding to mixed metal ion adsorption for individual pristine biochar involving different contributions of C-O-C, C-O-H, and CO groups and graphitic-N, pyrrolic-N, and pyridine-N groups. The LDH complexes with hydroxyl and carbonyl groups of biochar, and the LDH interacts with biochar's ether groups, which contributes to metal adsorption, against the conception that the biochar is merely a carrier of LDH as adsorbents.


Assuntos
Metais Pesados , Fosfatos , Água , Chumbo , Hidróxidos , Adsorção
6.
Langmuir ; 39(2): 829-840, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594668

RESUMO

Random vapor nucleation leads to flooding condensation with degraded heat-transfer efficiency. Since an external electric field has a significant effect on manipulating droplets' motion, it is possible to be one of the effective methods to hinder flooding phenomena and improve the heat-transfer rate by applying the external electric field during condensation. However, the motion of nanodroplets is more sensitive to the electric field owing to the scale effect on the nanoscale. The effect of the electric field on growth has not explicitly been comprehended. This work studied the condensation processes on a nanodimpled surface under an electric field with various strengths and directions. The results showed that condensed droplets' growth under the electric field depends on the competition between the electric field force and solid-liquid interactions. Increased vertical electric field strength, the higher torsion by the electric field hindered the motion of vapor, decreased the collision frequency for water molecules with the cooled surface, and elongated the cluster when the electric field force dominates, thus deteriorating the condensation performance. While applying the horizontal electric field, the greater electric field strength leads to better condensation performance by the larger contacting area for heat exchange. A wetting transition induced by the electric field was observed when the electric field strength increased to a certain extent (E > 5.2 × 108 V/m in this study). When the V-shaped surface replaced the dimpled surface as the condensed substrate, the same wetting transition phenomena occurred under a more significant horizontal electric field strength, showing that this method is universal. Besides, different electric field frequencies influenced both the growth and the nucleation, thus exhibiting various condensation performances.

7.
Environ Pollut ; 319: 121018, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610649

RESUMO

The anaerobic granulation technology has been successfully applied full-scale for treating high-strength recalcitrant acrylic acid wastewater. This mini-review highlighted the recalcitrance of acrylic acid and its biological degradation pathways. And then, the full-scale practices using anaerobic granulation technology for acrylic wastewater treatment were outlined. The granules are proposed to provide barriers for high-concentration acrylic acid to the embedded anaerobic microbes, maintaining its high degradation rate without apparent substrate inhibition. Based on this proposal, the prospects of applying anaerobic granulation technology to handle a wide range of high-strength recalcitrant wastewaters, to improve the current process performances, and to recover renewable resources were delineated. The anaerobic granulation for high-strength recalcitrant wastewater treatment is an emergent technology that can assist in fulfilling the appeals of the circular bioeconomy of modern society.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Eliminação de Resíduos Líquidos , Reatores Biológicos
8.
Bioresour Technol ; 371: 128640, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681351

RESUMO

This paper outlines an integrated anaerobic-anoxic-oxic (A2O) treatment scheme for high-strength, highly recalcitrant wastewater from the production of polyphenylene sulfide (PPS) resins and their composite chemicals. An integrated anaerobic granular sludge blanket (GSB) and anoxic-oxic (AO) reactor indicated that the A2O removed chemical oxygen demand (COD) of up to 7,043 mg/L with no adverse impact from high total dissolved solids (25,000 mg/L) on the GSB COD removal and effluent suspended solids. At a Total Kjeldahl Nitrogen (TKN) nitrification load of 0.11 g TKN/L.d and 400 mg NH3/L, almost 99 % of the NH3 was degraded with effluent NH3 < 5 mg/L, meeting the limit of 35 mg/L. High S2- levels of up to 1470 mg/L can be transformed through aerobic microbial degradation to meet a limit of 1.0 mg/L. With proper microbial acclimation and process designs, the integrated A2O scheme offers a resilient and robust treatment for high-strength recalcitrant PPS wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Esgotos , Nitrogênio/metabolismo
9.
Langmuir ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622857

RESUMO

The wetting and dewetting behaviors of Ag droplets on Mo(100), Mo(110), and Mo(111) surfaces were investigated over 1200-2000 K via molecular dynamics simulations. We used the diffusion energy barriers of Ag droplets on the three surfaces to analyze the phenomenon of different precursor films and adsorption layers on the different surfaces. Alloying enabled the Mo(111) surface better wettability in both Mo(110) and Mo(111) surfaces, where there were significant precursor films. We observed that the dewetting rate was the fastest on the surface with the densest adsorption layer. Simulations proved that the same molecular kinetic theory model was applicable to not only the wetting process but also the dewetting process on the same surface. We also provided evidence to support the fact that an increased temperature could reduce the time to reach equilibrium for the wetting and dewetting processes.

10.
Biomacromolecules ; 24(2): 943-956, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36645325

RESUMO

A new potential route to enhance the efficiency of supramolecular polymers for cancer chemotherapy was successfully demonstrated by employing a photosensitive metallosupramolecular polymer (Hg-BU-PPG) containing an oligomeric poly(propylene glycol) backbone and highly sensitive pH-responsive uracil-mercury-uracil (U-Hg-U) bridges. This route holds great promise as a multifunctional bioactive nano-object for development of more efficient and safer cancer chemotherapy. Owing to the formation of uracil photodimers induced by ultraviolet irradiation, Hg-BU-PPG can form a photo-cross-linked structure and spontaneously forms spherical nanoparticles in aqueous solution. The irradiated nanoparticles possess many unique characteristics, such as unique fluorescence behavior, highly sensitive pH-responsiveness, and intriguing phase transition behavior in aqueous solution as well as high structural stability and antihemolytic activity in biological media. More importantly, a series of cellular studies clearly confirmed that the U-Hg-U photo-cross-links in the irradiated nanoparticles substantially enhance their selective cellular uptake by cancer cells via macropinocytosis and the mercury-loaded nanoparticles subsequently induce higher levels of cytotoxicity in cancer cells (compared to non-irradiated nanoparticles), without harming normal cells. These results are mainly attributed to cancer cell microenvironment-triggered release of mercury ions from disassembled nanoparticles, which rapidly induce massive levels of apoptosis in cancer cells. Overall, the pH-sensitive U-Hg-U photo-cross-links within this newly discovered supramolecular system are an indispensable factor that offers a potential path to remarkably enhance the selective therapeutic effects of functional nanoparticles toward cancer cells.


Assuntos
Mercúrio , Nanopartículas , Neoplasias , Polímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Uracila/química , Concentração de Íons de Hidrogênio
11.
Sci Total Environ ; 863: 160825, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36502974

RESUMO

An increasing attention has been paid to the secure and sustainable management of agricultural wastes, especially lignocellulosic biomass. Nanobubble water (NBW) contains 106-108 bubbles/mL with diameter <1000 nm. Although previous studies have examined the enhancement effects of NBW on methane production from organic solid wastes, the NBW-based anaerobic digestion (AD) system is still restrained from practical application due to the large increase in AD reactor volume, generation of wastewater, and increase in energy consumption as well. In this study, NBW bioaugmentation of anaerobically digested sludge for the first time was performed for high-solids AD of corn straw. Results show that cellulase, xylanases and lignin peroxidase activities were increased by 2-55% during the NBW bioaugmentation process. Significant enrichment of hydrolytic/acidogenic bacteria and methanogenic archaea were noticed in the NBW bioaugmented sludge. This study clearly demonstrated 47% increase in methane production from high-solids AD of corn straw when O2-NBW bioaugmented sludge was applied, achieving a net energy gain of 5138 MJ/t-volatile solids of corn straw with an energy recovery of 34%. The NBW-based high-solids AD system can provide a novel and sustainable management solution for renewable energy production from agricultural wastes, targeting the reduction of environmental pollution and energy crisis.


Assuntos
Esgotos , Zea mays , Esgotos/microbiologia , Anaerobiose , Água , Reatores Biológicos , Metano , Biocombustíveis
14.
Bioresour Technol ; 370: 128538, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581231

RESUMO

Alternative protein sources for the reduction/replacement of fish meal in aqua-feeds are in urgent demand. Microalgae are considered sustainable protein sources for aquaculture due to their high-quality proteins with a complete profile of essential amino acids. This study examined the heterotrophic production of proteins from Chlorella sorokiniana SU-9. Culture parameters for maximal biomass and protein production are as follows: glucose - 10 g/L glucose, sodium nitrate - 1.5 g/L, and iron - 46 µM iron in BG-11 medium. Under optimal conditions, biomass content, protein content and protein productivity of SU-9 reached 4.14 ± 0.20 g/L, 403 ± 33 mg/g and 382 ± 36 mg/L/d, respectively. The protein profile of Chlorella sorokiniana SU-9 is comparable to fishmeal and soybean meal. The essential amino acids arginine, lysine and cysteine, along with glutamine and glutamate, were high. The production cost of SU-9 can be significantly reduced under heterotrophic cultivation conditions, making it a potential protein substitute in aquafeed.


Assuntos
Chlorella , Microalgas , Animais , Chlorella/metabolismo , Glucose/metabolismo , Biomassa , Processos Heterotróficos , Microalgas/metabolismo , Aminoácidos Essenciais/metabolismo
15.
Bioresour Technol ; 369: 128474, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509303

RESUMO

Calcium ions (Ca2+) are important for biological phosphorus (P) removal from wastewater, but its behavior has not been well documented during the anaerobic P release process. This study is aimed to explore the mechanisms of Ca2+ release in bacterial aerobic granular sludge (AGS) system. During the non-aeration (anaerobic) phase, nearly 40 % increase in Ca2+ concentration was detected at the bottom of AGS reactor where decrease in pH and increase in Mg2+ concentration occurred. The pH decrease due to anaerobic P release caused CaCO3 dissolution inside the granules, leading to Ca2+ release. In addition, the increased Mg2+ ions from hydrolysis of polyphosphates were detected to reversibly exchange with Ca2+ in granules at a molar ΔCa/ΔMg ratio of 0.51-0.65. Results from this work revealed that dissolution of CaCO3 and ions exchange between Ca2+ and Mg2+ were the two major contributors to Ca2+ release during anaerobic P release process.


Assuntos
Cálcio , Esgotos , Esgotos/microbiologia , Anaerobiose , Fósforo , Reatores Biológicos/microbiologia , Eliminação de Resíduos Líquidos , Nitrogênio
16.
Water Res ; 226: 119269, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279615

RESUMO

Biological nitrogen removal (BNR) is one of the most important environmental concerns in the field of wastewater treatment. The conventional BNR process based on heterotrophic nitrogen removal (HeNR) is suffering from several limitations, including external carbon source dependence, excessive sludge production, and greenhouse gas emissions. Through the mediation of autotrophic nitrogen removal (AuNR), mixed/mixotrophic nitrogen removal (MixNR) offers a viable solution to the optimization of the BNR process. Here, the recent advance and characteristics of MixNR process guided by sulfur-driven autotrophic denitrification (SDAD) and anammox are summarized in this review. Additionally, we discuss the functional microorganisms in different MixNR systems, shedding light on metabolic mechanisms and microbial interactions. The significance of MixNR for carbon reduction in the BNR process has also been noted. The knowledge gaps and the future research directions that may facilitate the practical application of the MixNR process are highlighted. Overall, the prospect of the MixNR process is attractive, and this review will provide guidance for the future implementation of MixNR process as well as deciphering the microbially metabolic mechanisms.


Assuntos
Nitrogênio , Desnitrificação , Reatores Biológicos , Oxirredução , Processos Autotróficos , Carbono , Nitratos/metabolismo
17.
Chemosphere ; 309(Pt 2): 136694, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206920

RESUMO

Lactic acid is an essential platform chemical with various applications in the chemicals, food, pharmaceutical, and cosmetic industries. Currently, the demand for lactic acid is driven by the role of lactic acid as the starting material for the production of bioplastic polylactide. Microbial fermentation for lactic acid production is favored due to the production of enantiomerically pure lactic acid required for polylactide synthesis, as opposed to the racemic mixture obtained via chemical synthesis. The utilization of first-generation feedstock for commercial lactic acid production is challenged by feedstock costs and sustainability issues. Macroalgae are photosynthetic benthic aquatic plants that contribute tremendously towards carbon capture with subsequent carbon-rich biomass production. Macroalgae are commercially cultivated to extract hydrocolloids, and recent studies have focused on applying biomass as a fermentation feedstock. This review provides comprehensive information on the design and development of sustainable and cost-effective, algae-based lactic acid production. The central carbon regulation in lactic acid bacteria and the metabolism of seaweed-derived sugars are described. An exhaustive compilation of lactic acid fermentation of macroalgae hydrolysates revealed that lactic acid bacteria can effectively ferment the mixture of sugars present in the hydrolysate with comparable yields. The environmental impacts and economic prospects of macroalgal lactic acid are analyzed. Valorization of the vast amounts of spent macroalgal biomass residue post hydrocolloid extraction in a biorefinery is a viable strategy for cost-effective lactic acid production.


Assuntos
Fermentação , Ácido Láctico , Alga Marinha , Biomassa , Carbono/metabolismo , Ácido Láctico/metabolismo , Alga Marinha/metabolismo , Açúcares/metabolismo
18.
Bioresour Technol ; 364: 128048, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36191749

RESUMO

Ferric iron (Fe(III)) ions are efficient electron acceptor in bioelectrochemical systems (BESs). For the first time, this study applied the enriched Fe(II)-oxidizing microflora individually from rust deposits, aerobic sludge, or topsoil to catholyte to regenerate Fe(III) ions to boost BES operation. Among three microflora, the rust-microflora had the highest Fe2+ oxidation rate and the lowest Fe ion loss rate since Acidithiobacillus sp., Ferrovum sp., Rhodobacter sp., Sphingomonas sp., and others enriched it. The rust-seeded BES generated the maximum power density of 77.15 ± 1.62 Wm-3 at 15 ℃, 38.9 %, and 31.4 % higher than those in sludge and topsoil-seeded BES, respectively. The rust-microflora with enriched Fe(II)-oxidizing bacteria could enhance the performance of BES, reaching coulombic efficiencies of 98.2 ± 2.6 at reduced internal resistance (5.14 Ω), with 1.59 Ω by activation resistance and 0.77 Ω by diffusion resistance.

19.
Bioresour Technol ; 363: 127890, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075347

RESUMO

Nitrate is the most common water environmental pollutant in the world. Inorganic electron donor-mediated denitrification is a typical process with significant advantages in treating low carbon-nitrogen ratio water and wastewater and has attracted extensive research attention. This review summarizes the denitrification processes using inorganic substances, including hydrogen, reductive sulfur compounds, zero-valent iron, and iron oxides, ammonium nitrogen, and other reductive heavy metal ions as electron donors. Aspects on the functional microorganisms, critical metabolic pathways, limiting factors and mathematical modeling are outlined. Also, the typical inorganic electron donor-mediated denitrification processes and their mechanism, the available microorganisms, process enhancing approaches and the engineering potentials, are compared and discussed. Finally, the prospects of developing the next generation inorganic electron donor-mediated denitrification process is put forward.


Assuntos
Compostos de Amônio , Poluentes Ambientais , Reatores Biológicos , Carbono , Desnitrificação , Elétrons , Hidrogênio , Ferro , Nitratos , Nitrogênio , Óxidos de Nitrogênio , Compostos de Enxofre , Água
20.
Bioresour Technol ; 363: 127920, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087651

RESUMO

Anaerobic treatment is applied as an alternative to traditional aerobic treatment for recalcitrant compound degradation. This review highlighted the recalcitrant compounds in wastewaters and their pathways under aerobic and anaerobic conditions. Forty-one recalcitrant compounds commonly found in wastewater along with associated anaerobic removal performance were summarized from current research. Anaerobic degradability of wastewater could not be appropriately evaluated by BOD/COD ratio, which should only be suitable for determining aerobic degradability. Recalcitrant wastewaters with a low BOD/COD ratio may be handled by anaerobic treatments after the adaption and provision of sufficient electron donors. Novel indicator characterizing the anaerobic recalcitrance of wastewater is called for, essential for emergent needs to resource recovery from high-strength recalcitrant wastewater for fulfilling appeals of circular bioeconomy of modern societies.


Assuntos
Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...