Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120413, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34597871

RESUMO

An easy to make xanthene based optical probe synthesized, precise recognition towards mercury ion been achieved by the probe RP and can detect Hg2+ effectively in both for solid and liquid state with a vivid color change. The other tested ion showed no interference, visual and instrumental methods confirms the probe selectivity. Stoichiometry (1:1) confirmed by job's plot, plausible binding of Hg2+ ion with the probe confirmed by mass and NMR studies. Test strip prepared for the prompt onsite detection in aqueous medium with outstanding color variation in daylight.


Assuntos
Corantes Fluorescentes , Mercúrio , Rodaminas , Água , Xantenos
2.
Bipolar Disord ; 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34850507

RESUMO

AIM: Symptoms of bipolar disorder (BD) include changes in mood, activity, energy, sleep, and appetite. Since many of these processes are regulated by circadian function, circadian rhythm disturbance has been examined as a biological feature underlying BD. The International Society for Bipolar Disorders Chronobiology Task Force (CTF) was commissioned to review evidence for neurobiological and behavioral mechanisms pertinent to BD. METHOD: Drawing upon expertise in animal models, biomarkers, physiology, and behavior, CTF analyzed the relevant cross-disciplinary literature to precisely frame the discussion around circadian rhythm disruption in BD, highlight key findings, and for the first time integrate findings across levels of analysis to develop an internally consistent, coherent theoretical framework. RESULTS: Evidence from multiple sources implicates the circadian system in mood regulation, with corresponding associations with BD diagnoses and mood-related traits reported across genetic, cellular, physiological, and behavioral domains. However, circadian disruption does not appear to be specific to BD and is present across a variety of high-risk, prodromal, and syndromic psychiatric disorders. Substantial variability and ambiguity among the definitions, concepts and assumptions underlying the research have limited replication and the emergence of consensus findings. CONCLUSIONS: Future research in circadian rhythms and its role in BD is warranted. Well-powered studies that carefully define associations between BD-related and chronobiologically-related constructs, and integrate across levels of analysis will be most illuminating.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34947734

RESUMO

The mono and bi-metallic nanoparticles have conspicuous properties and are widely used in the environment, energy, and medical fields. In this study, bimetallic nanoparticles composed of silver and iron were precipitated on the surface of activated carbon in a single process using plasma in liquid process (PLP). Silver-iron ions and various radicals were actively generated in the aqueous reactant solution by the PLP. Although metals were precipitated on AC depending on the number of precursors added to the aqueous reactant solution, the standard reduction potential of silver ions was higher than that of iron ions, so silver precipitated on AC. The silver precipitate on AC was a mixture of metallic silver and silver oxide, and iron was present as Fe3O4. Spherical nanoparticles, 100-120 nm in size, were observed on the surface of the Ag-Fe/AC composite. The composition of the bimetallic nanoparticles could be controlled by considering the ionization tendency and standard reduction potential of metal ions and controlling the concentration of the precursors. The PLP presented in this study can be applied to the preparing method of bimetallic nanoparticle/carbon materials and can be expected to be used in the prepare of energy and environmental materials such as MFC and absorption materials for removing pollutants.

4.
Psychiatry Investig ; 18(11): 1125-1130, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34732029

RESUMO

OBJECTIVE: Previous studies have suggested various causes of restless legs syndrome (RLS), including iron and dopamine concentrations in the brain. Genetic influences have also been reported in many studies. There is also a possibility that circadian clock genes may be involved because symptoms of RLS worsen at night. We investigated whether CLOCK and NPAS2 gene polymorphisms were associated with RLS. METHODS: A total of 227 patients with RLS and 229 non-RLS matched controls were assessed according to the International Restless Legs Syndrome Study Group diagnostic criteria. Genotyping was performed using reverse transcription polymerase chain reaction and high-resolution melting curve analyses. RESULTS: Although the genotype distributions of the CLOCK variants (rs1801260 and rs2412646) were not significantly different between patients with RLS and non-RLS controls, the allele frequencies of CLOCK rs1801260 showed marginally significant differences between the two groups (X2 =2.98, p=0.085). Furthermore, there was a significant difference in the distribution of CLOCK haplotypes (rs1801260-rs2412646) between patients with RLS and non-RLS controls (p=0.013). The distributions of allelic, genotypic, and haplotypic variants of NPAS2 (rs2305160 and rs6725296) were not significantly different between the two groups. CONCLUSION: Our results suggest that CLOCK variants may be associated with decreased susceptibility to RLS.

5.
Adv Mater ; : e2105338, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783075

RESUMO

Recent studies on soft adhesives have sought to deeply understand how their chemical or mechanical structures interact strongly with living tissues. The aim is to optimally address the unmet needs of patients with acute or chronic diseases. Synergistic adhesion involving both electrostatic (hydrogen bonds) and mechanical interactions (capillarity-assisted suction stress) seems to be effective in overcoming the challenges associated with long-term unstable coupling to tissues. Here, an electrostatically and mechanically synergistic mechanism of residue-free, sustainable, in situ tissue adhesion by implementing hybrid multiscale architectonics. To deduce the mechanism, a thermodynamic model based on a tailored multiscale combinatory adhesive is proposed. The model supports the experimental results that the thermodynamically controlled swelling of the nanoporous hydrogel embedded in the hierarchical elastomeric structure enhances biofluid-insensitive, sustainable, in situ adhesion to diverse soft, slippery, and wet organ surfaces, as well as clean detachment in the peeling direction. Based on the robust tissue adhesion capability, universal reliable measurements of electrophysiological signals generated by various tissues, ranging from rodent sciatic nerve, the muscle, brain, and human skin, are successfully demonstrated.

6.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819374

RESUMO

Cancer cells can develop an immunosuppressive tumor microenvironment to control tumor-infiltrating lymphocytes. The underlying mechanisms still remain unclear. Here, we report that mouse and human colon cancer cells acquire lymphocyte membrane proteins including cellular markers such as CD4 and CD45. We observed cell populations harboring both a tumor-specific marker and CD4 in the tumor microenvironment. Sorted cells from these populations were capable of forming organoids, identifying them as cancer cells. Live imaging analysis revealed that lymphocyte membrane proteins were transferred to cancer cells via trogocytosis. As a result of the transfer in vivo, cancer cells also acquired immune regulatory surface proteins such as CTLA4 and Tim3, which suppress activation of immune cells [T. L. Walunas et al, Immunity 1, 405-413 (1994) and L. Monney et al., Nature 415, 536-541 (2002)]. RNA sequencing analysis of ex vivo-cocultured splenocytes with trogocytic cancer cells showed reductions in Th1 activation and natural killer cell signaling pathways compared with the nontrogocytic control. Cancer cell trogocytosis was confirmed in the patient-derived xenograft models of colorectal cancer and head and neck cancer. These findings suggest that cancer cells utilize membrane proteins expressed in lymphocytes, which in turn contribute to the development of the immunosuppressive tumor microenvironment.

7.
Macromol Rapid Commun ; : e2100579, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34708464

RESUMO

High-resolution 3D-printable hydrogels with high mechanical strength and biocompatibility are in great demand because of their potential applications in numerous fields. In this study, a material system comprising Pluronic F-127 dimethacrylate (FDMA) is developed to function as a direct ink writing (DIW) hydrogel for 3D printing. FDMA is a triblock copolymer that transforms into micelles at elevated temperatures. The transformation increases the viscosity of FDMA and preserves its structure during DIW 3D printing, whereupon the printed structure is solidified through photopolymerization. Because of this viscosity shift, various functionalities can be incorporated through the addition of other materials in the solution state. Acrylic acid is incorporated into the pregel solution to enhance the mechanical strength, because the carboxylate group of poly(acrylic acid) ionically crosslinks with Fe3+ , increasing the toughness of the DIW hydrogel 37 times to 2.46 MJ m-3 . Tough conductive hydrogels are also 3D printed by homogenizing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate into the pregel solution. Furthermore, the FDMA platform developed herein uses DIW, which facilitates multicartridges 3D printing, and because all the materials included are biocompatible, the platform may be used to fabricate complex structures for biological applications.

8.
Opt Express ; 29(20): 31364-31375, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615230

RESUMO

For the efficient radiative cooling of objects, coolers should emit heat within atmospheric transparent window and block heat absorption from the surrounding environments. Thus, selective emitters enable highly efficient cooling via engineered photonic structures such as metamaterials and multi-stacking structures. However, these structures require sophisticated fabrication processes and large quantities of materials, which can restrict mass-production. This study introduces an ultra-thin (∼1 µm) and near-unity selective emitter (UNSE) within the atmospheric window, which can be fabricated using simple and affordable process. The combination of infrared (IR) lossy layers and high index lossless layer enhances the resonance in the structure thus, the emissivity in long wavelength IR region increases to near-unity within a thickness of ∼1 µm.

9.
J Inflamm Res ; 14: 4299-4312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511969

RESUMO

Purpose: Psoriasis is a common and well-studied autoimmune skin disease, which is characterized by plaques. The formation of psoriasis plaques occurs through the hyperproliferation and abnormal differentiation of keratinocytes, infiltration of numerous immune cells into the dermis, increased subepidermal angiogenesis, and various autoimmune-associated cytokines and chemokines. According to previous research, Lin28 regulates the let-7 family, and let-7b is associated with psoriasis. However, the link between Lin28 and psoriasis is unclear. In this study, an association was identified between Lin28a and psoriasis progression, which promoted the pathological characteristic of psoriasis in epidermal keratinocytes. Patients and Methods: This study aims to investigate the role of Lin28a and its underlying mechanism in psoriasis through in vivo and in vitro models, which include the Lin28a-overexpressing transgenic (TG) mice and Lin28a-overexpressing human keratinocyte (HaCaT) cell lines, respectively. Results: In vivo and in vitro results revealed that overexpression of Lin28a downregulated microRNA let-7 expression levels and caused hyperproliferation and abnormal differentiation in keratinocytes. In imiquimod (IMQ)-induced psoriasis-like inflammation, Lin28a overexpressing transgenic (TG) mice exhibited more severe symptoms of psoriasis. Conclusion: Mechanistically, Lin28a exacerbated psoriasis-like inflammation through the activation of the extracellular-signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 signaling (STAT 3) by targeting proinflammatory cytokine interleukin-6 (IL-6).

10.
Small ; 17(41): e2102892, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34515417

RESUMO

Native extracellular matrix (ECM) exhibits dynamic change in the ligand position. Herein, the ECM-emulating control and real-time monitoring of stem cell differentiation are demonstrated by ligand nanoassembly. The density of gold nanoassembly presenting cell-adhesive Arg-Gly-Asp (RGD) ligand on Fe3 O4 (magnetite) nanoparticle in nanostructures flexibly grafted to material is changed while keeping macroscale ligand density invariant. The ligand nanoassembly on the Fe3 O4 can be magnetically attracted to mediate rising and falling ligand movements via linker stretching and compression, respectively. High ligand nanoassembly density stimulates integrin ligation to activate the mechanosensing-assisted stem cell differentiation, which is monitored via in situ real-time electrochemical sensing. Magnetic control of rising and falling ligand movements hinders and promotes the adhesion-mediated mechanotransduction and differentiation of stem cells, respectively. These rising and falling ligand states yield the difference in the farthest distance (≈34.6 nm) of the RGD from material surface, thereby dynamically mimicking static long and short flexible linkers, which hinder and promote cell adhesion, respectively. Design of cytocompatible ligand nanoassemblies can be made with combinations of dimensions, shapes, and biomimetic ligands for remotely regulating stem cells for offering novel methodologies to advance regenerative therapies.


Assuntos
Fenômenos Magnéticos , Mecanotransdução Celular , Adesão Celular , Diferenciação Celular , Ligantes
11.
Circulation ; 144(16): 1308-1322, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34474596

RESUMO

BACKGROUND: Angiogenesis is a dynamic process that involves expansion of a preexisting vascular network that can occur in a number of physiological and pathological settings. Despite its importance, the origin of the new angiogenic vasculature is poorly defined. In particular, the primary subtype of endothelial cells (capillary, venous, arterial) driving this process remains undefined. METHODS: Endothelial cells were fate-mapped with the use of genetic markers specific to arterial and capillary cells. In addition, we identified a novel venous endothelial marker gene (Gm5127) and used it to generate inducible venous endothelium-specific Cre and Dre driver mouse lines. Contributions of these various types of endothelial cells to angiogenesis were examined during normal postnatal development and in disease-specific setting. RESULTS: Using a comprehensive set of endothelial subtype-specific inducible reporter mice, including tip, arterial, and venous endothelial reporter lines, we showed that venous endothelial cells are the primary endothelial subtype responsible for the expansion of an angiogenic vascular network. During physiological angiogenesis, venous endothelial cells proliferate, migrating against the blood flow and differentiating into tip, capillary, and arterial endothelial cells of the new vasculature. Using intravital 2-photon imaging, we observed venous endothelial cells migrating against the blood flow to form new blood vessels. Venous endothelial cell migration also plays a key role in pathological angiogenesis. This was observed both in formation of arteriovenous malformations in mice with inducible endothelium-specific Smad4 deletion mice and in pathological vessel growth seen in oxygen-induced retinopathy. CONCLUSIONS: Our studies establish that venous endothelial cells are the primary endothelial subtype responsible for normal expansion of vascular networks, formation of arteriovenous malformations, and pathological angiogenesis. These observations highlight the central role of the venous endothelium in normal development and disease pathogenesis.

12.
Nanomaterials (Basel) ; 11(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34578660

RESUMO

Ag particles were precipitated on an activated carbon fiber (ACF) surface using a liquid phase plasma (LPP) method to prepare a Ag/ACF composite. The efficiency was examined by applying it as an adsorbent in the acetaldehyde adsorption experiment. Field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry confirmed that Ag particles were distributed uniformly on an ACF surface. X-ray diffraction and X-ray photoelectron spectroscopy confirmed that metallic silver (Ag0) and silver oxide (Ag2O) precipitated simultaneously on the ACF surface. Although the precipitated Ag particles blocked the pores of the ACF, the specific surface area of the Ag/ACF composite material decreased, but the adsorption capacity of acetaldehyde was improved. The AA adsorption of ACF and Ag/ACF composites performed in this study was suitable for the Dose-Response model.

13.
Nature ; 597(7877): 503-510, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34552257

RESUMO

Large, distributed collections of miniaturized, wireless electronic devices1,2 may form the basis of future systems for environmental monitoring3, population surveillance4, disease management5 and other applications that demand coverage over expansive spatial scales. Aerial schemes to distribute the components for such networks are required, and-inspired by wind-dispersed seeds6-we examined passive structures designed for controlled, unpowered flight across natural environments or city settings. Techniques in mechanically guided assembly of three-dimensional (3D) mesostructures7-9 provide access to miniature, 3D fliers optimized for such purposes, in processes that align with the most sophisticated production techniques for electronic, optoelectronic, microfluidic and microelectromechanical technologies. Here we demonstrate a range of 3D macro-, meso- and microscale fliers produced in this manner, including those that incorporate active electronic and colorimetric payloads. Analytical, computational and experimental studies of the aerodynamics of high-performance structures of this type establish a set of fundamental considerations in bio-inspired design, with a focus on 3D fliers that exhibit controlled rotational kinematics and low terminal velocities. An approach that represents these complex 3D structures as discrete numbers of blades captures the essential physics in simple, analytical scaling forms, validated by computational and experimental results. Battery-free, wireless devices and colorimetric sensors for environmental measurements provide simple examples of a wide spectrum of applications of these unusual concepts.

14.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361027

RESUMO

The experimental animal model is still essential in the development of new anticancer drugs. We characterized mouse tumors derived from two-dimensional (2D) monolayer cells or three-dimensional (3D) spheroids to establish an in vivo model with highly standardized conditions. Primary cancer-associated fibroblasts (CAFs) were cultured from head and neck squamous cell carcinoma (HNSCC) tumor tissues and co-injected with monolayer cancer cells or spheroids into the oral mucosa of mice. Mice tumor blood vessels were stained, followed by tissue clearing and 3D Lightsheet fluorescent imaging. We compared the effect of exosomes secreted from 2D or 3D culture conditions on the angiogenesis-related genes in HNSCC cells. Our results showed that both the cells and spheroids co-injected with primary CAFs formed tumors. Interestingly, vasculature was abundantly distributed inside the spheroid-derived but not the monolayer-derived mice tumors. In addition, cisplatin injection more significantly decreased spheroid-derived but not monolayer-derived tumor size in mice. Additionally, exosomes isolated from co-culture media of FaDu spheroid and CAF upregulated angiogenesis-related genes in HNSCC cells as compared to exosomes from FaDu cell and CAF co-culture media under in vitro conditions. The mouse tumor xenograft model derived from 3D spheroids of HNSCC cells with primary CAFs is expected to produce reliable chemotherapy drug screening results given the robust angiogenesis and lack of necrosis inside tumor tissues.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Bucais/patologia , Neovascularização Patológica/patologia , Esferoides Celulares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/metabolismo , Exossomos/metabolismo , Feminino , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Bucais/metabolismo , Neovascularização Patológica/metabolismo , Cultura Primária de Células/métodos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/normas
15.
Chronobiol Int ; 38(11): 1640-1649, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34412524

RESUMO

In a previous study comparing two representative chronotype questionnaires to screen for delayed sleep-phase disorder, six items from the simplified language version of Composite Scale of Morningness (CSM) have been found to be useful and effective for screening evening-type person. In this study, we reverse coded the six items from CSM and named them Evening Chronotype Scale (ECS). The primary aim of this study was to examine the psychometric properties, validity, and test-retest reliability of the ECS when administered on mood disorder patients. The secondary aim was to further examine the relationship between circadian preferences and symptoms of mood disorders. The study sample was of 472 mood disorder patients including major depressive disorder, bipolar disorder I, and bipolar disorder II. The 13-item full version CSM and 6-item ECS were externally validated by self-reported sleep time, wake time, sleep latency, depressive symptoms, hypomanic symptoms, quality of life, and impulsivity. Cronbach's alpha was calculated for the internal consistency of the ECS, and the test-retest reliability analysis was also performed. Our results suggest that the ECS is a reliable and valid instrument to assess circadian preference in mood disorder patients. First, the ECS showed moderate to good internal consistency (Cronbach's alpha = 0.727). Also, it showed external validity comparable to that of the 13-item CSM. Participants who were more evening-oriented according to the ECS slept and woke up later, took longer time to fall asleep, showed more depressive and hypomanic symptoms, and showed lower quality of life and higher impulsivity. As circadian rhythm disruption has been shown to affect the regulation of mood symptoms in patients with mood disorders, assessment of circadian preferences may be crucial in clinical settings. We suggest that ECS appears to be an easy-to-use instrument that is reliable and valid.


Assuntos
Transtorno Depressivo Maior , Ritmo Circadiano , Transtorno Depressivo Maior/diagnóstico , Humanos , Qualidade de Vida , Reprodutibilidade dos Testes , Sono , Inquéritos e Questionários
16.
ACS Nano ; 15(9): 14137-14148, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34425674

RESUMO

The development of bioinspired switchable adhesive systems has promising solutions in various industrial/medical applications. Switchable and perceptive adhesion regardless of the shape or surface shape of the object is still challenging in dry and aquatic surroundings. We developed an electronic sensory soft adhesive device that recapitulates the attaching, mechanosensory, and decision-making capabilities of a soft adhesion actuator. The soft adhesion actuator of an artificial octopus sucker may precisely control its robust attachment against surfaces with various topologies in wet environments as well as a rapid detachment upon deflation. Carbon nanotube-based strain sensors are three-dimensionally coated onto the irregular surface of the artificial octopus sucker to mimic nerve-like functions of an octopus and identify objects via patterns of strain distribution. An integration with machine learning complements decision-making capabilities to predict the weight and center of gravity for samples with diverse shapes, sizes, and mechanical properties, and this function may be useful in turbid water or fragile environments, where it is difficult to utilize vision.


Assuntos
Nanotubos de Carbono , Eletrônica
17.
PLoS One ; 16(6): e0253886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166456

RESUMO

BACKGROUND AND AIMS: The low-salt diet is considered important for control of ascites in cirrhotic patients. To validate whether the spot urine sodium (Na)/potassium (K) ratio could replace 24-h urine Na (uNa) excretion in assessing low-salt diet compliance. METHODS: We prospectively studied 175 patients. 24-h urine collection and spot urine collection were performed. Subsequently, 24-h uNa, urine creatinine (uCr), and spot urine Na and K were assessed. A complete urine collection was confirmed based on 24-h uCr excretion levels of 15mg/kg/day for men and 10mg/kg/day for women. The area under the receiver operating characteristic (AUROC) curve analysis was performed to evaluate the feasibility of spot urine Na/K ratio in predicting 24-h uNa greater than 78mmol/day. RESULTS: Out of 175 patients, 24-h urine samples were completely collected in 57 patients only. Moreover, urine samples were not completely collected in 118 patients because their 24-h uCr excretion level was less than the established criteria. In complete urine collection group, AUROC curve for spot urine Na/K ratio in predicting 24-h uNa greater than 78mmol/day was 0.874±0.051 (P<0.001). In the incomplete urine collection group, the AUROC was 0.832±0.039 (P<0.001). In complete urine collection group, the classical cutoff value greater than 1.0 of spot urine Na/K ratio showed 90.9% sensitivity and 56.0% specificity. CONCLUSIONS: The spot urine Na/K ratio reflects 24-h uNa, but the AUROC value obtained in this study is lower than that of a previous study. Considered the large number of patients with incomplete urine collection, validating 24-h complete urine collection criteria is necessary.


Assuntos
Ascite/urina , Cirrose Hepática/urina , Potássio/urina , Sódio/urina , Adulto , Ascite/complicações , Ascite/patologia , Creatinina/urina , Feminino , Humanos , Cirrose Hepática/complicações , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Cooperação do Paciente , Curva ROC
18.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34134988

RESUMO

Recent advances in bioinspired nano/microstructures have received attention as promising approaches with which to implement smart skin-interfacial devices for personalized health care. In situ skin diagnosis requires adaptable skin adherence and rapid capture of clinical biofluids. Here, we report a simple, all-in-one device consisting of microplungers and hydrogels that can rapidly capture biofluids and conformally attach to skin for stable, real-time monitoring of health. Inspired by the male diving beetle, the microplungers achieve repeatable, enhanced, and multidirectional adhesion to human skin in dry/wet environments, revealing the role of the cavities in these architectures. The hydrogels within the microplungers instantaneously absorb liquids from the epidermis for enhanced adhesiveness and reversibly change color for visual indication of skin pH levels. To realize advanced biomedical technologies for the diagnosis and treatment of skin, our suction-mediated device is integrated with a machine learning framework for accurate and automated colorimetric analysis of pH levels.

19.
Nat Commun ; 12(1): 3926, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168136

RESUMO

Thermoelectrics operating at high temperature can cost-effectively convert waste heat and compete with other zero-carbon technologies. Among different high-temperature thermoelectrics materials, silicon nanowires possess the combined attributes of cost effectiveness and mature manufacturing infrastructures. Despite significant breakthroughs in silicon nanowires based thermoelectrics for waste heat conversion, the figure of merit (ZT) or operating temperature has remained low. Here, we report the synthesis of large-area, wafer-scale arrays of porous silicon nanowires with ultra-thin Si crystallite size of ~4 nm. Concurrent measurements of thermal conductivity (κ), electrical conductivity (σ), and Seebeck coefficient (S) on the same nanowire show a ZT of 0.71 at 700 K, which is more than ~18 times higher than bulk Si. This ZT value is more than two times higher than any nanostructured Si-based thermoelectrics reported in the literature at 700 K. Experimental data and theoretical modeling demonstrate that this work has the potential to achieve a ZT of ~1 at 1000 K.

20.
Adv Mater Interfaces ; 8(7)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33996383

RESUMO

In this paper, we report a simple and facile method to fabricate nanomolded Nafion thin films with tunable mechanical, and electrical properties. To achieve this, we combine a novel thermal evaporation-induced capillary force lithography method with swelling process to obtain enhanced pattern fidelity in nanomolded Nafion films. We demonstrate that structural fidelity and mechanical properties of patterned Nafion thin films can be modulated by changing fabrication parameters such as swelling time, Nafion polymer concentration, and curing temperature. Interestingly, we also find that impedance properties of nanomolded Nafion thin films are associated with the Nafion polymer concentration and curing temperature. In particular, 20% Nafion thin films exhibit greater impedance stability and lower impedance values than 5% Nafion thin films at lower frequencies. Moreover, curing temperature-specific impedance changes are observed. These results suggest that capillary lithography can be used to fabricate Nafion nanostructures with high pattern fidelity capable of modifying mechanical and electrical properties of Nafion thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...