Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
World Neurosurg ; 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34637941

RESUMO

OBJECTIVE: To compare the outcomes of minimally invasive lateral lumbar interbody fusion (LLIF) with minimally invasive transforaminal lumbar interbody fusion (TLIF) and conventional open posterior lumbar interbody fusion (PLIF) for treating single-level spondylolisthesis at L4-L5. METHODS: The subjects underwent minimally invasive LLIF (n = 18), minimally invasive TLIF (n = 17), and conventional open PLIF (n = 20) for spondylolisthesis at L4-L5. Reduction of slippage, improvement in segmental lordosis, and restoration of foraminal height were measured. Perioperative parameters such as blood loss and operation time and clinical outcomes such as visual analog scale and Oswestry disability index were compared. RESULTS: In comparison to the open PLIF group, the minimally invasive LLIF group showed greater restoration of mean foraminal height, significantly smaller mean intraoperative estimated blood loss, and less mean hemoglobin reduction on the third day postoperatively. In comparison to the minimally invasive TLIF group, the minimally invasive LLIF group showed greater restoration of mean segmental lordosis. The minimally invasive LLIF group showed a significantly shorter mean time to start walking after surgery compared to the conventional open PLIF and minimally invasive TLIF groups. However, compared to the minimally invasive TLIF group, the minimally invasive LLIF group showed a significantly longer mean operating time. Clinical outcomes were not statistically different between the three groups. CONCLUSION: In the treatment of spondylolisthesis of L4-L5, minimally invasive LLIF provided an effective surgical alternative to minimally invasive TLIF or conventional open PLIF, with the advantages of less blood loss, the faster start of postoperative walking, and comparable improvement in radiologic parameters.

2.
Vet Sci ; 8(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34679060

RESUMO

Cardiac arrest (CA) causes severe spinal cord injury and evokes spinal cord disorders including paraplegia. It has been reported that risperidone, an antipsychotic drug, effectively protects neuronal cell death from transient ischemia injury in gerbil brains. However, until now, studies on the effects of risperidone on spinal cord injury after asphyxial CA (ACA) and cardiopulmonary resuscitation (CPR) are not sufficient. Therefore, this study investigated the effect of risperidone on hind limb motor deficits and neuronal damage/death in the lumbar part of the spinal cord following ACA in rats. Mortality, severe motor deficits in the hind limbs, and the damage/death (loss) of motor neurons located in the anterior horn were observed two days after ACA/CPR. These symptoms were significantly alleviated by risperidone (an atypical antipsychotic) treatment after ACA. In vehicle-treated rats, the immunoreactivities of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1ß), as pro-inflammatory cytokines, were increased, and the immunoreactivities of IL-4 and IL-13, as anti-inflammatory cytokines, were reduced with time after ACA/CPR. In contrast, in risperidone-treated rats, the immunoreactivity of the pro-inflammatory cytokines was significantly decreased, and the anti-inflammatory cytokines were enhanced compared to vehicle-treated rats. In brief, risperidone treatment after ACA/CPR in rats significantly improved the survival rate and attenuated paralysis, the damage/death (loss) of motor neurons, and inflammation in the lumbar anterior horn. Thus, risperidone might be a therapeutic agent for paraplegia by attenuation of the damage/death (loss) of spinal motor neurons and neuroinflammation after ACA/CPR.

3.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576901

RESUMO

Transient ischemia in brains causes neuronal damage, gliosis, and blood-brain barrier (BBB) breakdown, which is related to ischemia-induced brain dysfunction. Populus species have various pharmacological properties including antioxidant and anti-inflammatory activities. In this study, we found that phenolic compounds were rich in Populus tomentiglandulosa extract and examined the effects of Populus tomentiglandulosa extract on neuronal damage/death, astrogliosis, and BBB breakdown in the striatum, which is related to motor behavior, following 15-min transient ischemia in the forebrain in gerbils. The gerbils were pre-treated with 50, 100, and 200 mg/kg of the extract. The latter showed significant effects against ischemia-reperfusion injury. Ischemia-induced hyperactivity using spontaneous motor activity test was significantly attenuated by the treatment. Striatal cells (neurons) were dead at five days after the ischemia; however, pre-treatment with the extract protected the striatal cells from ischemia/reperfusion injury. Ischemia-induced reactive astrogliosis was significantly alleviated, in particular, astrocyte end feet, which are a component of BBB, were significantly preserved. Immunoglobulin G, which is not found in intact brain parenchyma, was apparently shown (an indicator of extravasation) in striatal parenchyma at five days after the ischemia, but IgG leakage was dramatically attenuated in the parenchyma by the pre-treatment. Based on these findings, we suggest that Populus tomentiglandulosa extract rich in phenolic compounds can be employed as a pharmaceutical composition to develop a preventive material against brain ischemic injury.

4.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361744

RESUMO

Korean red pine (Pinus densiflora) belongs to the Genus Pinus, and its bark contains a great amount of naturally occurring phenolic compounds. Until now, few studies have been conducted to assess the neuroprotective effects of Pinus densiflora bark extract against brain ischemic injury. The aim of this study was to investigate the neuroprotective effects of pre-treatment with the extract in the hippocampus following 5-min transient forebrain ischemia in gerbils. Furthermore, this study examined the anti-inflammatory effect as a neuroprotective mechanism of the extract. Pinus densiflora bark was extracted by pure water (100 °C), and this extract was quantitatively analyzed and contained abundant polyphenols, flavonoids, and proanthocyanidins. The extract (25, 50, and 100 mg/kg) was orally administered once a day for seven days before the ischemia. In the gerbil hippocampus, death of the pyramidal neurons was found in the subfield cornu ammonis 1 (CA1) five days after the ischemia. This death was significantly attenuated by pre-treatment with 100 mg/kg, not 25 or 50 mg/kg, of the extract. The treatment with 100 mg/kg of the extract markedly inhibited the activation of microglia (microgliosis) and significantly decreased the expression of pro-inflammatory cytokines (interleukin 1ß and tumor necrosis factor α). In addition, the treatment significantly increased anti-inflammatory cytokines (interleukin 4 and interleukin 13). Taken together, this study clearly indicates that pre-treatment with 100 mg/kg of Pinus densiflora bark extract in gerbils can exert neuroprotection against brain ischemic injury by the attenuation of neuroinflammatory responses.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pinus/química , Prosencéfalo/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Flavonoides/química , Flavonoides/farmacologia , Expressão Gênica/efeitos dos fármacos , Gerbillinae , Hipocampo/metabolismo , Hipocampo/patologia , Inflamação , Interleucina-13/agonistas , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-4/agonistas , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fármacos Neuroprotetores/química , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/farmacologia , Proantocianidinas/química , Proantocianidinas/farmacologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Biology (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34439951

RESUMO

Inadequate activation of cell cycle proteins including cyclin D1 and cdk4 is involved in neuronal cell death induced by diverse pathological stresses, including transient global brain ischemia. The neuroprotective effect of ischemic preconditioning is well-established, but the underlying mechanism is still unknown. In this study, we examined changes in cyclin D1, cdk4, and related molecules in cells or neurons located in Cornu Ammonis 1 (CA1) of gerbil hippocampus after transient ischemia for 5 min (ischemia and reperfusion) and investigated the effects of IPC on these molecules after ischemia. Four groups were used in this study as follows: sham group, ischemia group, IPC plus (+) sham group, and IPC+ischemia group. IPC was developed by inducing 2-min ischemia at 24 h before 5-min ischemia (real ischemia). Most pyramidal cells located in CA1 of the ischemia group died five days after ischemia. CA1 pyramidal cells in the IPC+ischemia group were protected. In the ischemia group, the expressions of cyclin D1, cdk4, phosphorylated retinoblastoma (p-Rb), and E2F1 (a transcription factor regulated by p-Rb) were significantly altered in the pyramidal cells with time after ischemia; in the IPC+ischemia group, they were controlled at the level shown in the sham group. In particular, the expression of p16INK4a (an endogenous cdk inhibitor) in the ischemia group was reversely altered in the pyramidal cells; in the IPC+TI group, the expression of p16INK4a was not different from that shown in the sham group. Our current results indicate that cyclin D1/cdk4-related signals may have important roles in events in neurons related to damage/death following ischemia and reperfusion. In particular, the preservation of p16INK4a by IPC may be crucial in attenuating neuronal death/damage or protecting neurons after brain ischemic insults.

7.
Lab Anim Res ; 37(1): 16, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261545

RESUMO

BACKGROUND: Hypothermic treatment is known to protect organs against cardiac arrest (CA) and improves survival rate. However, few studies have evaluated the effects of hypothermia on CA-induced liver damages. This study was designed to analyzed the possible protective effects of hypothermia on the liver after asphyxial CA (ACA). Rats were randomly subjected to 5 min of ACA followed by return of spontaneous circulation (ROSC). Body temperature was controlled at 37 ± 0.5 °C (normothermia group) or 33 ± 0.5 °C (hypothermia group) for 4 h after ROSC. Liver tissues were extracted and examined at 6 h, 12 h, 1 day, and 2 days after ROSC. RESULTS: The expression of infiltrated neutrophil marker CD11b and matrix metallopeptidase-9 (MMP9) was investigated via immunohistochemistry. Morphological damage was assessed via hematoxylin and eosin (H & E) staining. Hypothermic treatment improved the survival rate at 6 h, 12 h, 1 day, and 2 days after ACA. Based on immunohistochemical analysis, the expression of CD11b and MMP9 was significantly increased from 6 h after ACA in the normothermia group. However, the expressions of CD11b and MMP9 was significantly decreased in the hypothermia group compared with that of the normothermia group. In addition, in the results of H & E, sinusoidal dilatation and vacuolization were apparent after ACA; however, these ACA-induced structural changes were reduced by the 4 h-long hypothermia. CONCLUSIONS: In conclusion, hypothermic treatment for 4 h inhibited the increases in CD11b and MMP9 expression and reduced the morphological damages in the liver following ACA in rats. This study suggests that hypothermic treatment after ACA reduces liver damages by regulating the expression of CD11b and MMP9.

8.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072419

RESUMO

Although endometriosis is a benign disease characterized by the presence of endometrial tissues outside the uterus, ectopic endometrial cells can exhibit malignant biological behaviors. Retinol-binding protein4 (RBP4) is a novel adipocyte-derived cytokine, which has important roles in regulating insulin sensitivity and energy metabolism. RBP4 is a potent modulator of gene transcription, and acts by directly controlling cell growth, invasiveness, proliferation and differentiation. Here, we evaluated the possible role of RBP4 in the pathogenesis of endometriosis. We compared the levels of RBP4 in the tissues and peritoneal fluid (PF) of women with and without endometriosis and evaluated the in vitro effects of RBP4 on the viability, invasiveness, and proliferation of endometrial stromal cells (ESCs). RBP4 levels were significantly higher in the PF of the women in the endometriosis group than in the controls. RBP4 immunoreactivity was significantly higher in the ovarian endometriomas of women with advanced stage endometriosis than those of controls. In vitro treatment with human recombinant-RBP4 significantly increased the viability, bromodeoxyuridine expression, and invasiveness of ESCs. Transfection with RBP4 siRNA significantly reduced ESC viability and invasiveness. These findings suggest that RBP4 partakes in the pathogenesis of endometriosis by increasing the viability, proliferation and invasion of endometrial cells.


Assuntos
Suscetibilidade a Doenças , Endometriose/etiologia , Endometriose/metabolismo , Ovário/patologia , Proteínas Plasmáticas de Ligação ao Retinol/genética , Biomarcadores , Sobrevivência Celular , Endometriose/patologia , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/farmacologia , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/farmacologia
9.
Neurochem Res ; 46(11): 2852-2866, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34050880

RESUMO

Transient ischemia in the brain causes blood-brain barrier (BBB) breakdown and dysfunction, which is related to ischemia-induced neuronal damage. Leakage of plasma proteins following transient ischemia is one of the indicators that is used to determine the extent of BBB dysfunction. In this study, neuronal damage/death, leakage of albumin and IgG, microgliosis, and inflammatory cytokine expression were examined in the hippocampal CA1 region, which is vulnerable to transient ischemia, following 5-min (mild) and 15-min (severe) ischemia in gerbils induced by transient common carotid arteries occlusion (tCCAo). tCCAo-induced neuronal damage/death occurred earlier and was more severe after 15-min tCCAo vs. after 5-min tCCAo. Significant albumin and IgG leakage (albumin and IgG immunoreactivity) took 1 or 2 days to begin, and immunoreactivity was markedly increased 5 days after 5-min tCCAo. While, albumin and IgG leakage began to increase 6 h after 15-min tCCAo and remained significantly higher over time than that seen in 5-min tCCAo. IgG immunoreactivity was observed in degenerating neurons and activated microglia after tCCAo, and microglia were activated to a greater extent after 15-min tCCAo than 5-min tCCAo. In addition, following 15-min tCCAo, pro-inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß)] immunoreactivity was significantly higher than that seen following 5-min tCCAo, whereas immunoreactivity of anti-inflammatory cytokines (IL-4 and IL-13) was lower in 15-min than 5-min tCCAo. These results indicate that duration of tCCAo differentially affects the timing and degree of neuronal damage or loss, albumin and IgG leakage and inflammatory cytokine expression in brain tissue. In addition, more severe BBB leakage is closely related to acceleration of neuronal damage through increased microglial activation and pro-inflammatory cytokine expression in the ischemic hippocampal CA1 region.

10.
Exp Ther Med ; 21(6): 626, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33968162

RESUMO

Hypothermic treatment is known to protect against cardiac arrest (CA) and improve survival rate. However, few studies have evaluated the CA-induced liver damage and the effects of hypothermia on this damage. Therefore, the aim of the present study was to determine possible protective effects of hypothermia on the liver after asphyxial CA. Rats were subjected to a 5-min asphyxial CA followed by return of spontaneous circulation (ROSC). The body temperature was controlled at 37±0.5˚C (normothermia group) or 33±0.5˚C (hypothermia group) for 4 h after ROSC. Livers were examined at 6, 12 h, 1 and 2 days after ROSC. Histopathological examination was performed by H&E staining. Alterations in the expression levels of pro-inflammatory (TNF-α and interleukin IL-2) and anti-inflammatory cytokines (IL-4 and IL-13) were investigated by immunohistochemistry. Sinusoidal dilatation and vacuolization were observed after asphyxial CA by histopathological examination. However, these CA-induced structural alterations were prevented by hypothermia. In immunohistochemical examination, the expression levels of pro-inflammatory cytokines were reduced in the hypothermia group compared with those in the normothermia group while the expression levels of anti-inflammatory cytokines were increased in the hypothermia group compared with those in the normothermia group. In conclusion, hypothermic treatment for 4 h following asphyxial CA in rats inhibited the increase of pro-inflammatory cytokines and stimulated the expression of anti-inflammatory cytokines compared with the normothermic group. The results of the present study suggested that hypothermic treatment after asphyxial CA reduced liver damage via the regulation of inflammation.

11.
Antioxidants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924188

RESUMO

Salicin is a major natural compound of willow bark and displays diverse beneficial biological properties, such as antioxidant activity. However, little information available for the neuroprotective potential of salicin against ischemic brain injury has been reported. Thus, this study was performed to investigate the neuroprotective potential of salicin against ischemia and reperfusion (IR) injury and its mechanisms in the hippocampus using a gerbil model of 5-min transient ischemia (TI) in the forebrain, in which a massive loss (death) of pyramidal neurons cells occurred in the subfield Cornu Ammonis 1 (CA1) among the hippocampal subregions (CA1-3) at 5 days after TI. To examine neuroprotection by salicin, gerbils were pretreated with salicin alone or together with LY294002, which is a phosphatidylinositol 3-kinase (PI3K) inhibitor, once daily for 3 days before TI. Treatment with 20 mg/kg of salicin significantly protected CA1 pyramidal neurons against the ischemic injury. Treatment with 20 mg/kg of salicin significantly reduced the TI-induced increase in superoxide anion generation and lipid peroxidation in the CA1 pyramidal neurons after TI. The treatment also reinstated the TI-induced decrease in superoxide dismutases (SOD1 and SOD2), catalase, and glutathione peroxidase in the CA1 pyramidal cells after TI. Moreover, salicin treatment significantly elevated the levels of phosphorylation of Akt and glycogen synthase kinase-3ß (GSK3ß), which is a major downstream target of PI3K, in the ischemic CA1. Notably, the neuroprotective effect of salicin was abolished by LY294002. Taken together, these findings clearly indicate that salicin protects against ischemic brain injury by attenuating oxidative stress and activating the PI3K/Akt/GSK3ß pathway.

12.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925708

RESUMO

Human microbiota refers to living microorganisms which colonize our body and crucially contribute to the metabolism of nutrients and various physiologic functions. According to recently accumulated evidence, human microbiota dysbiosis in the genital tract or pelvic cavity could be involved in the pathogenesis and/or pathophysiology of endometriosis. We aimed to investigate whether the composition of microbiome is altered in the peritoneal fluid in women with endometriosis. We recruited 45 women with histological evidence of ovarian endometrioma and 45 surgical controls without endometriosis. Following the isolation of extracellular vesicles from peritoneal fluid samples from women with and without endometriosis, bacterial genomic DNA was sequenced using next-generation sequencing of the 16S rDNA V3-V4 regions. Diversity analysis showed significant differences in the microbial community at phylum, class, order, family, and genus levels between the two groups. The abundance of Acinetobacter, Pseudomonas, Streptococcus, and Enhydrobacter significantly increased while the abundance of Propionibacterium, Actinomyces, and Rothia significantly decreased in the endometriosis group compared with those in the control group (p < 0.05). These findings strongly suggest that microbiome composition is altered in the peritoneal environment in women with endometriosis. Further studies are necessary to verify whether dysbiosis itself can cause establishment and/or progression of endometriosis.


Assuntos
Líquido Ascítico/microbiologia , Endometriose/microbiologia , Vesículas Extracelulares/microbiologia , Adulto , Líquido Ascítico/patologia , Bactérias/genética , Estudos de Casos e Controles , DNA Bacteriano/genética , Disbiose/complicações , Endometriose/etiologia , Endometriose/metabolismo , Vesículas Extracelulares/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética , Microbiota/fisiologia , RNA Ribossômico 16S/genética
13.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921375

RESUMO

It has been studied that the damage or death of neurons in the hippocampus is different according to hippocampal subregions, cornu ammonis 1-3 (CA1-3), after transient ischemia in the forebrain, showing that pyramidal neurons located in the subfield CA1 (CA1) are most vulnerable to this ischemia. Hyperthermia is a proven risk factor for brain ischemia and can develop more severe and extensive brain damage related with mortality rate. It is well known that heme oxygenase-1 (HO-1) activity and expression is increased by various stimuli in the brain, including hyperthermia. HO-1 can be either protective or deleterious in the central nervous system, and its roles depend on the expression levels of enzymes. In this study, we investigated the effects of hyperthermia during ischemia on HO-1 expression and neuronal damage/death in the hippocampus to examine the relationship between HO-1 and neuronal damage/death following 5-min transient ischemia in the forebrain using gerbils. Gerbils were assigned to four groups: (1) sham-operated gerbils with normothermia (Normo + sham group); (2) ischemia-operated gerbils with normothermia (Normo + ischemia group); (3) sham-operated gerbils with hyperthermia (39.5 ± 0.2 °C) during ischemia (Hyper + sham group); and (4) ischemia-operated gerbils with hyperthermia during ischemia (Hyper + ischemia group). HO-1 expression levels in CA1-3 of the Hyper + ischemia group were significantly higher than those in the Normo + ischemia group. HO-1 immunoreactivity in the Hyper + ischemia group was significantly increased in pyramidal neurons and astrocytes with time after ischemia, and the immunoreactivity was significantly higher than that in the Normo + ischemia group. In the Normo + Ischemia group, neuronal death was shown in pyramidal neurons located only in CA1 at 5 days after ischemia. However, in the Hyper + ischemia group, pyramidal neuronal death occurred in CA1-3 at 2 days after ischemia. Taken together, our findings showed that brain ischemic insult during hyperthermic condition brings up earlier and severer neuronal damage/death in the hippocampus, showing that HO-1 expression in neurons and astrocytes is different according to brain subregions and temperature condition. Based on these findings, we suggest that hyperthermia in patients with ischemic stroke must be taken into the consideration in the therapy.


Assuntos
Lesões Encefálicas/genética , Heme Oxigenase-1/genética , Hipocampo/metabolismo , Traumatismo por Reperfusão/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo/lesões , Hipocampo/fisiopatologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Traumatismo por Reperfusão/patologia
14.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918660

RESUMO

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Assuntos
Angelica/química , Astrócitos/patologia , Benzopiranos/uso terapêutico , Barreira Hematoencefálica/patologia , Butiratos/uso terapêutico , Ataque Isquêmico Transitório/patologia , Extratos Vegetais/uso terapêutico , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Butiratos/química , Butiratos/farmacologia , Gerbillinae , Proteína Glial Fibrilar Ácida/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Imunoglobulina G/metabolismo , Masculino , Neuraminidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/farmacologia , Padrões de Referência , Memória Espacial/efeitos dos fármacos
15.
Global Spine J ; : 21925682211001801, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33733887

RESUMO

STUDY DESIGN: A retrospective case-control study. OBJECTIVES: The usefulness of a drain in spinal surgery has always been controversial. The purposes of this study were to determine the incidence of hematoma-related complications after posterior lumbar interbody fusion (PLIF) without a drain and to evaluate its usefulness. METHODS: We included 347 consecutive patients with degenerative lumbar disease who underwent single- or double-level PLIF. The participants were divided into 2 groups by the use of a drain or not; drain group and no-drain group. RESULTS: In 165 cases of PLIF without drain, there was neither a newly developed neurological deficit due to hematoma nor reoperation for hematoma evacuation. In the no-drain group, there were 5 (3.0%) patients who suffered from surgical site infection (SSI), all superficial, and 17 (10.3%) patients who complained of postoperative transient recurred leg pain, all treated conservatively. Days from surgery to ambulation and length of hospital stay (LOS) of the no-drain group were faster than those of the drain group (P < 0.001). In a multiple regression analysis, a drain insertion was found to have a significant effect on the delayed ambulation and increased LOS. No significant differences existed between the 2 groups in additional surgery for hematoma evacuation, or SSI. CONCLUSIONS: No hematoma-related neurological deficits or reoperations caused by epidural hematoma and SSI were observed in the no-drain group. The no-drain group did not show significantly more frequent postoperative complications than the drain use group, hence the routine insertion of a drain following PLIF should be reconsidered carefully.

16.
Lab Anim Res ; 37(1): 11, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676586

RESUMO

BACKGROUND: Aging is one of major causes triggering neurophysiological changes in many brain substructures, including the hippocampus, which has a major role in learning and memory. Thioredoxin (Trx) is a class of small redox proteins. Among the Trx family, Trx2 plays an important role in the regulation of mitochondrial membrane potential and is controlled by TrxR2. Hitherto, age-dependent alterations in Trx2 and TrxR2 in aged hippocampi have been poorly investigated. Therefore, the aim of this study was to examine changes in Trx2 and TrxR2 in mouse and rat hippocampi by age and to compare their differences between mice and rats. RESULTS: Trx2 and TrxR2 levels using Western blots in mice were the highest at young age and gradually reduced with time, showing that no significant differences in the levels were found between the two subfields. In rats, however, their expression levels were the lowest at young age and gradually increased with time. Nevertheless, there were no differences in cellular distribution and morphology in their hippocampi when it was observed by cresyl violet staining. In addition, both Trx2 and TrxR2 immunoreactivities in the CA1-3 fields were mainly shown in pyramidal cells (principal cells), showing that their immunoreactivities were altered like changes in their protein levels. CONCLUSIONS: Our current findings suggest that Trx2 and TrxR2 expressions in the brain may be different according to brain regions, age and species. Therefore, further studies are needed to examine the reasons of the differences of Trx2 and TrxR2 expressions in the hippocampus between mice and rats.

17.
Eur J Med Chem ; 214: 113232, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33550184

RESUMO

Over 50 tetrahydroindazoles were synthesized after 7-bromo-3,6,6-trimethyl-1-(pyridin-2-yl)-5,6,7,7a-tetrahydro-1H-indazol-4(3aH)-one (3) was identified as a hit compound in a high throughput screen for inhibition of CDK2 in complex with cyclin A. The activity of the most promising analogues was evaluated by inhibition of CDK2 enzyme complexes with various cyclins. Analogues 53 and 59 showed 3-fold better binding affinity for CDK2 and 2- to 10-fold improved inhibitory activity against CDK2/cyclin A1, E, and O compared to screening hit 3. The data from the enzyme and binding assays indicate that the binding of the analogues to a CDK2/cyclin complex is favored over binding to free CDK2. Computational analysis was used to predict a potential binding site at the CDK2/cyclin E1 interface.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Ciclinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indazóis/síntese química , Indazóis/química , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
18.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33537826

RESUMO

Altered expression levels of N­methyl­D­aspartate receptor (NMDAR), a ligand­gated ion channel, have a harmful effect on cellular survival. Hyperthermia is a proven risk factor of transient forebrain ischemia (tFI) and can cause extensive and severe brain damage associated with mortality. The objective of the present study was to investigate whether hyperthermic preconditioning affected NMDAR1 immunoreactivity associated with deterioration of neuronal function in the gerbil hippocampal CA1 region following tFI via histological and western blot analyses. Hyperthermic preconditioning was performed for 1 h before tFI, which was developed by ligating common carotid arteries for 5 min. tFI­induced cognitive impairment under hyperthermia was worse compared with that under normothermia. Loss (death) of pyramidal neurons in the CA1 region occurred fast and was more severe under hyperthermia compared with that under normothermia. NMDAR1 immunoreactivity was not observed in the somata of pyramidal neurons of sham gerbils with normothermia. However, its immunoreactivity was strong in the somata and processes at 12 h post­tFI. Thereafter, NMDAR1 immunoreactivity decreased with time after tFI. On the other hand, NMDAR1 immunoreactivity under hyperthermia was significantly increased in the somata and processes at 6 h post­tFI. The change pattern of NMDAR1 immunoreactivity under hyperthermia was different from that under normothermia. Overall, accelerated tFI­induced neuronal death under hyperthermia may be closely associated with altered NMDAR1 expression compared with that under normothermia.


Assuntos
Isquemia Encefálica/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipertermia Induzida , Transtornos da Memória/metabolismo , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Isquemia Encefálica/patologia , Morte Celular , Gerbillinae , Hipocampo/patologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/patologia , Neurônios , Prosencéfalo/patologia
19.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440708

RESUMO

Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood-brain barrier, which triggers gliosis after ischemic insults.


Assuntos
Calbindina 1/genética , Jejum , Expressão Gênica , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Animais , Calbindina 1/imunologia , Morte Celular/genética , Morte Celular/imunologia , Gerbillinae , Gliose/etiologia , Imunoglobulina G/imunologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia
20.
Int J Pharm ; 595: 120257, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486029

RESUMO

Main purpose was to evaluate the applicability of a 3D-printer equipped with a hot-melt pneumatic dispenser as a single-step process to prepare tablet dosage forms. Dutasteride, a poorly water-soluble drug, was selected as a model drug. Soluplus®, Kollidon® VA 64, Eudragit® E PO, and hydroxypropyl cellulose (HPC) were premixed as bulking agents prior to printing. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA) were utilized to evaluate the physicochemical properties of the 3D-printed tablets. Moreover, different geometries were designed to correlate the surface area/volume (SA/V) of the tablets with respect to their release profiles. As a result, printed dutasteride was confirmed to be in an amorphous state and not recrystallized even after the accelerated storage stability. Out of the four bulking agents, Kollidon® VA 64, enhanced the dissolution of the printed dutasteride, reaching above 80% within 15 min. These results suggest that the hot-melt pneumatic dispenser was efficient in converting the solid state into an amorphous state, which significantly enhanced the dissolution. On the other hand, the tube-shaped 3D-printed tablet exhibited the fastest drug dissolution profile, which had the highest SA/V ratio in comparison to the cube, hemisphere, and pyramid shapes. These results confirm the dependency of the drug dissolution rate not only on its crystallinity but also on the surface area of the 3D-printed tablet. Therefore, a 3D-printer equipped with a hot-melt pneumatic dispenser possesses useful applicability in enhancing drug dissolution, especially for poorly water-soluble drugs, in a single-step process.


Assuntos
Composição de Medicamentos/métodos , Tecnologia de Extrusão por Fusão a Quente/métodos , Comprimidos/química , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Dutasterida/química , Excipientes/química , Polietilenoglicóis/química , Polímeros/química , Impressão Tridimensional , Solubilidade , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...