Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
ACS Nano ; 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583574

RESUMO

Magnesium-sulfur (Mg-S) batteries are emerging as a promising alternative to lithium-ion batteries, due to their high energy density and low cost. Unfortunately, current Mg-S batteries typically suffer from the shuttle effect that originates from the dissolution of magnesium polysulfide intermediates, leading to several issues such as rapid capacity fading, large overcharge, severe self-discharge, and potential safety concern. To address these issues, here we harness a copper phosphide (Cu3P) modified separator to realize the adsorption of magnesium polysulfides and catalyzation of the conversion reaction of S and Mg2+ toward stable cycling of Mg-S cells. The bifunctional layer with Cu3P confined in a carbon matrix is coated on a commercial polypropylene membrane to form a porous membrane with high electrolyte wettability and good thermal stability. Density functional theory (DFT) calculations, polysulfide permeability tests, and post-mortem analysis reveal that the catalytic layer can adsorb polysulfides, effectively restraining the shuttle effect and facilitating the reversibility of the Mg-S cells. As a result, the Mg-S cells can achieve a high specific capacity, fast rates (449 mAh g-1 at 0.1 C and 249 mAh g-1 at 1.0 C), and a long cycle life (up to 500 cycles at 0.5 C) and operate even at elevated temperatures.

2.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430361

RESUMO

Inflammation exacerbates systemic pathophysiological conditions and chronic inflammation is a sustained and systemic phenomenon that aggravates aging that can lead to chronic age-related diseases. These inflammatory phenomena have recently been redefined and delineated at the molecular, cellular, and systemic levels. Many transcription factors that are activated in response to tumor metabolic state have been reported to be regulated by a class of histone deacetylase called sirtuins (SIRTs). Sirtuins play a pivotal role in the regulation of tumor cell metabolism, proliferation, and angiogenesis, including oxidative stress and inflammation. The SIRT1-mediated signaling pathway in diabetes and cancer is the SIRT1/forkhead-box class O (FoxO)/nuclear factor-kappa B (NF-κB) pathway. In this review, we describe the accumulation of SIRT1-, NF-κB-, and FoxO-mediated inflammatory processes and cellular proinflammatory signaling pathways. We also describe the proinflammatory mechanisms underlying metabolic molecular pathways in various diseases such as liver cancer and diabetes. Finally, the regulation of cancer and diabetes through the anti-inflammatory effects of natural compounds is highlighted. Evidence from inflammation studies strongly suggests that cells may be a major source of cytokines secreted during various diseases. A better understanding of the mechanisms that underpin the inflammatory response and palliative role of natural compounds will provide insights into the molecular mechanisms of inflammation and various diseases for potential intervention.


Assuntos
Neoplasias , Sirtuínas , Humanos , Fatores de Transcrição , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Sirtuínas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neoplasias/tratamento farmacológico
3.
Curr Issues Mol Biol ; 44(11): 5416-5426, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36354679

RESUMO

Previously, we reported that Sargassum horneri (Turner) C. Agardh (S. horneri) is a brown algae species that exerts anti-inflammatory activity toward murine macrophages. However, the anti-neuroinflammatory effects and the mechanism of S. horneri on microglia cells are still unknown. We investigated the anti-neuroinflammatory effects of S. horneri extract on microglia in vitro and in vivo. In the present study, we found that S. horneri was not cytotoxic to BV-2 microglia cells and it significantly decreased lipopolysaccharide (LPS)-induced NO production. Moreover, S. horneri also diminished the protein expression of iNOS, COX-2, and cytokine production, including IL-1ß, TNF-α, and IL-6, on LPS-stimulated microglia activation. S. horneri elicited anti-neuroinflammatory effects by inhibiting phosphorylation of p38 MAPK and NF-κB. In addition, S. horneri inhibited astrocytes and microglia activation in LPS-challenged mice brain. Therefore, these results suggested that S. horneri exerted anti-neuroinflammatory effects on LPS-stimulated microglia cell activation by inhibiting neuroinflammatory factors and NF-κB signaling.

4.
Nat Commun ; 13(1): 6197, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261435

RESUMO

The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the [Formula: see text] orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using Cu L3 and Pr M5 resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa2Cu3O7, where the Pr f-electrons create a direct orbital bridge between CuO2 planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials.

5.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233176

RESUMO

Forkhead box O transcription factors (FoxOs) play an important role in maintaining normal cell physiology by regulating survival, apoptosis, autophagy, oxidative stress, the development and maturation of T and B lymphocytes, and the secretion of inflammatory cytokines. Cell types whose functions are regulated by FoxOs include keratinocytes, mucosal dermis, neutrophils, macrophages, dendritic cells, tumor-infiltrating activated regulatory T (Tregs) cells, B cells, and natural killer (NK) cells. FoxOs plays a crucial role in physiological and pathological immune responses. FoxOs control the development and function of Foxp3+ Tregs. Treg cells and Th17 cells are subsets of CD4+ T cells, which play an essential role in immune homeostasis and infection. Dysregulation of the Th17/Treg cell balance has been implicated in the development and progression of several disorders, such as autoimmune diseases, inflammatory diseases, and cancer. In addition, FoxOs are stimulated by the mitogen-activated protein (MAP) kinase pathway and inhibited by the PI3 kinase/AKT pathway. Downstream target genes of FoxOs include pro-inflammatory signaling molecules (toll-like receptor (TLR) 2, TLR4, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α), chemokine receptors (CCR7 and CXCR2), B-cell regulators (APRIL and BLYS), T-regulatory modulators (Foxp3 and CTLA-4), and DNA repair enzymes (GADD45α). Here, we review the recent progress in our understanding of FoxOs as the key molecules involved in immune cell differentiation and its role in the initiation of autoimmune diseases caused by dysregulation of immune cell balance. Additionally, in various diseases, FoxOs act as a cancer repressor, and reviving the activity of FoxOs forces Tregs to egress from various tissues. However, FoxOs regulate the cytotoxicity of both CD8+ T and NK cells against tumor cells, aiding in the restoration of redox and inflammatory homeostasis, repair of the damaged tissue, and activation of immune cells. A better understanding of FoxOs regulation may help develop novel potential therapeutics for treating immune/oxidative stress-related diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Doenças Autoimunes/metabolismo , Antígeno CTLA-4/metabolismo , Citocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Humanos , Interleucinas/metabolismo , Mitógenos/metabolismo , Neoplasias/metabolismo , Oxirredução , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR7/metabolismo , Linfócitos T Reguladores , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Fatores de Necrose Tumoral/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(15): e2119429119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377791

RESUMO

Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite. Here, we report a combined resonant soft X-ray scattering (RSXS) and neutron scattering study of charge and spin density waves in isotopically enriched La1.8−xEu0.2SrxCuO4 over a range of doping 0.07≤x≤0.20. We find that the CDW amplitude is temperature independent and develops well above experimentally accessible temperatures. Further, the CDW wavevector shows a nonmonotonic temperature dependence, exhibiting Yamada behavior at low temperature with a sudden change occurring near the spin ordering temperature. We describe these observations using a Landau­Ginzburg theory for an incommensurate CDW in a metallic system with a finite charge compressibility and spin-CDW coupling. Extrapolating to high temperature, where the CDW amplitude is small and spin order is absent, our analysis predicts a decreasing wavevector with doping, similar to Y and Bi cuprates. Our study suggests that CDW order in all families of cuprates forms by a common mechanism.

7.
Sci Adv ; 8(6): eabk0832, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138893

RESUMO

The normal state of high-Tc cuprates has been considered one of the essential topics in high-temperature superconductivity research. However, compared to the high magnetic field study of it, understanding a photoinduced normal state remains elusive. Here, we explore a photoinduced normal state of YBa2Cu3O6.67 through a charge density wave (CDW) with time-resolved resonant soft x-ray scattering, as well as a high magnetic field x-ray scattering. In the nonequilibrium state where people predict a quenched superconducting state based on the previous optical spectroscopies, we experimentally observed a similar analogy to the competition between superconductivity and CDW shown in the equilibrium state. We further observe that the broken pairing states in the superconducting CuO2 plane via the optical pump lead to nucleation of three-dimensional CDW precursor correlation. Ultimately, these findings provide a critical clue that the characteristics of the photoinduced normal state show a solid resemblance to those under magnetic fields in equilibrium conditions.

8.
Nat Commun ; 13(1): 704, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35121768

RESUMO

Single-crystalline nickel-rich cathodes are a rising candidate with great potential for high-energy lithium-ion batteries due to their superior structural and chemical robustness in comparison with polycrystalline counterparts. Within the single-crystalline cathode materials, the lattice strain and defects have significant impacts on the intercalation chemistry and, therefore, play a key role in determining the macroscopic electrochemical performance. Guided by our predictive theoretical model, we have systematically evaluated the effectiveness of regaining lost capacity by modulating the lattice deformation via an energy-efficient thermal treatment at different chemical states. We demonstrate that the lattice structure recoverability is highly dependent on both the cathode composition and the state of charge, providing clues to relieving the fatigued cathode crystal for sustainable lithium-ion batteries.

9.
Exp Ther Med ; 22(6): 1470, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34737810

RESUMO

Osteoarthritis (OA), which is caused by joint damage, is the most common form of arthritis, affecting millions of people worldwide. This damage can accumulate over time, which is why aging is one of the main contributors to joint damage associated with OA. The OA-related proteins that have been reported to date have been identified by the comparative analysis of OA patients with normal controls, following surgical or pharmacological treatment. For the first time, the present study analyzed OA-related proteins in patients with OA according to the International Cartilage Repair Society (ICRS) scale. Changes in protein expression can be observed during the OA process. The present study demonstrated differential protein expression patterns in articular cartilage from ICRS1- and ICRS3-graded OA patients. ICRS grade-matched OA knee samples from 12 OA patients, 6 ICRS grade 1 patients and 6 ICRS3 patients were subjected to proteomic analysis using the LTQ-Orbitrap mass spectrometry system. A total of 231 unique proteins were identified as expressed across the ICRS1 and ICRS3 OA patient groups. Relative differences in protein expression associated with the following classifications were observed: Biological adhesion, cell killing, cellular process, development process and molecular function. Although some of these proteins have been previously reported to be associated with rheumatoid arthritis, including cartilage oligomeric matrix protein, collagen types, angiogenin, complement C5 and CD59 glycoprotein, numerous additional proteins were newly identified, which may further help our understanding of disease pathogenesis. These findings suggested that these proteins may be used to develop novel therapeutic targets for OA.

10.
Front Bioeng Biotechnol ; 9: 734483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692657

RESUMO

Bone morphogenetic proteins (BMPs) have been widely used as treatment for bone repair. However, clinical trials on fracture repair have challenged the effectiveness of BMPs and suggested that delivery of multipotent bone marrow stromal cells (BMSCs) might be beneficial. During bone remodeling and bone fracture repair, multipotent BMSCs differentiate into osteoblasts or chondrocytes to stimulate bone formation and regeneration. Stem cell-based therapies provide a promising approach for bone formation. Extensive research has attempted to develop adjuvants as specific stimulators of bone formation for therapeutic use in patients with bone resorption. We previously reported for the first time bone-forming peptides (BFPs) that induce osteogenesis and bone formation. BFPs are also a promising osteogenic factor for prompting bone regeneration and formation. Thus, the aim of the present study was to investigate the underlying mechanism of a new BFP-4 (FFKATEVHFRSIRST) in osteogenic differentiation and bone formation. This study reports that BFP-4 induces stronger osteogenic differentiation of BMSCs than BMP-7. BFP-4 also induces ALP activity, calcium concentration, and osteogenic factors (Runx2 and osteocalcin) in a dose dependent manner in BMSCs. Therefore, these results indicate that BFP-4 can induce osteogenic differentiation and bone formation. Thus, treatment of multipotent BMSCs with BFP-4 enhanced osteoblastic differentiation and displayed greater bone-forming ability than BMP-7 treatment. These results suggest that BFP-4-stimulated cell therapy may be an efficient and cost-effective complement to BMP-7-based clinical therapy for bone regeneration and formation.

11.
Adv Mater ; 33(2): e2006147, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33270282

RESUMO

Nickel hydroxide represents a technologically important material for energy storage, such as hybrid supercapacitors. It has two different crystallographic polymorphs, α- and ß-Ni(OH)2 , showing advantages in either theoretical capacity or cycling/rate performance, manifesting a trade-off trend that needs to be optimized for practical applications. Here, the synergistic superiorities in both activity and stability of corrugated ß-Ni(OH)2 nanosheets are demonstrated through an electrochemical abuse approach. With ≈91% capacity retention after 10 000 cycles, the corrugated ß-Ni(OH)2 nanosheets can deliver a gravimetric capacity of 457 C g-1 at a high current density of 30 A g-1 , which is nearly two and four times that of the regular α- and ß-Ni(OH)2 , respectively. Operando spectroscopy and finite element analysis reveal that greatly enhanced chemical activity and structural robustness can be attributed to the in situ tailored lattice defects and the strain-induced highly curved micromorphology. This work demonstrates a multi-scale defect-and-strain co-design strategy, which is helpful for rational design and tuned fabrication of next-generation electrode materials for stable and high-rate energy storage.

12.
Nat Commun ; 11(1): 6342, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311507

RESUMO

Lithium-rich nickel-manganese-cobalt (LirNMC) layered material is a promising cathode for lithium-ion batteries thanks to its large energy density enabled by coexisting cation and anion redox activities. It however suffers from a voltage decay upon cycling, urging for an in-depth understanding of the particle-level structure and chemical complexity. In this work, we investigate the Li1.2Ni0.13Mn0.54Co0.13O2 particles morphologically, compositionally, and chemically in three-dimensions. While the composition is generally uniform throughout the particle, the charging induces a strong depth dependency in transition metal valence. Such a valence stratification phenomenon is attributed to the nature of oxygen redox which is very likely mostly associated with Mn. The depth-dependent chemistry could be modulated by the particles' core-multi-shell morphology, suggesting a structural-chemical interplay. These findings highlight the possibility of introducing a chemical gradient to address the oxygen-loss-induced voltage fade in LirNMC layered materials.

13.
Nat Commun ; 11(1): 4433, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895388

RESUMO

Surface lattice reconstruction is commonly observed in nickel-rich layered oxide battery cathode materials, causing unsatisfactory high-voltage cycling performance. However, the interplay of the surface chemistry and the bulk microstructure remains largely unexplored due to the intrinsic structural complexity and the lack of integrated diagnostic tools for a thorough investigation at complementary length scales. Herein, by combining nano-resolution X-ray probes in both soft and hard X-ray regimes, we demonstrate correlative surface chemical mapping and bulk microstructure imaging over a single charged LiNi0.8Mn0.1Co0.1O2 (NMC811) secondary particle. We reveal that the sub-particle regions with more micro cracks are associated with more severe surface degradation. A mechanism of mutual modulation between the surface chemistry and the bulk microstructure is formulated based on our experimental observations and finite element modeling. Such a surface-to-bulk reaction coupling effect is fundamentally important for the design of the next generation battery cathode materials.

14.
ACS Appl Mater Interfaces ; 12(33): 37757-37763, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32696641

RESUMO

SrRuO3 (SRO) thin films and their heterostructure have attracted much attention because of the recently demonstrated fascinating properties, such as topological Hall effect and skyrmions. Critical to the understanding of those SRO properties is the study of the spin configuration. Here, we conduct resonant soft X-ray scattering (RSXS) at the oxygen K edge to investigate the spin configuration of a four-unit-cell SRO film that was grown epitaxially on a single-crystal SrTiO3. The RSXS signal under a magnetic field (∼0.4 tesla) clearly shows a magnetic dichroism pattern around the specular reflection. Model calculations on the RSXS signal demonstrate that the magnetic dichroism pattern originates from a Néel-type chiral spin structure in this SRO thin film. We believe that the observed spin structure of the SRO system is a critical piece of information for understanding its intriguing magnetic and transport properties.

15.
Biosci Biotechnol Biochem ; 84(9): 1861-1869, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32475338

RESUMO

Dendritic cells (DCs) are play critical roles in the priming and regulation of immune responses. DCs rapidly process and convey these antigens to prime antigen-specific T cells. Therefore, regulation of DCs functions is important for immunity and immunotherapies. Immune adjuvants for DCs activation are needed to improve the efficacy of vaccines against tumors and many infectious diseases. Therefore, we demonstrate that H. fusiformis extract can regulate DCs maturation and activation. H. fusiformis extract induced costimulatory molecules (CD 80 and CD86), antigen-presenting molecules (major histocompatibility complex (MHC) I and II), CCR7 expression, and interleukin (IL)-12 production in DCs. These effects are associated with upregulation of mitogen-activated protein kinase (MAPK) signaling pathway. In addition, H. fusiformis extract induces costimulatory molecules on splenic DCs and activated CD8+ T cells in vivo. Taken together, these findings suggest that H. fusiformis extract may be a potential efficient immune therapeutic compound in DCs-mediated immunotherapies. ABBREVIATIONS: CTL: cytotoxic T lymphocytes; DCs: dendritic cells; ERK: extracellular signal-regulated kinases; IL: interleukini; JNK: c-Jun N-terminal kinase; MAPK: mitogen-activated protein kinase; MHC: major histocompatibility complex.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sargassum/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-12/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores CCR7/metabolismo
16.
Rev Sci Instrum ; 90(11): 113101, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779391

RESUMO

We present results obtained with a new soft X-ray spectrometer based on transition-edge sensors (TESs) composed of Mo/Cu bilayers coupled to bismuth absorbers. This spectrometer simultaneously provides excellent energy resolution, high detection efficiency, and broadband spectral coverage. The new spectrometer is optimized for incident X-ray energies below 2 keV. Each pixel serves as both a highly sensitive calorimeter and an X-ray absorber with near unity quantum efficiency. We have commissioned this 240-pixel TES spectrometer at the Stanford Synchrotron Radiation Lightsource beamline 10-1 (BL 10-1) and used it to probe the local electronic structure of sample materials with unprecedented sensitivity in the soft X-ray regime. As mounted, the TES spectrometer has a maximum detection solid angle of 2 × 10-3 sr. The energy resolution of all pixels combined is 1.5 eV full width at half maximum at 500 eV. We describe the performance of the TES spectrometer in terms of its energy resolution and count-rate capability and demonstrate its utility as a high throughput detector for synchrotron-based X-ray spectroscopy. Results from initial X-ray emission spectroscopy and resonant inelastic X-ray scattering experiments obtained with the spectrometer are presented.

17.
J Am Chem Soc ; 141(30): 12079-12086, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31287957

RESUMO

Li- and Mn-rich (LMR) layered cathode materials have demonstrated impressive capacity and specific energy density thanks to their intertwined redox centers including transition metal cations and oxygen anions. Although tremendous efforts have been devoted to the investigation of the electrochemically driven redox evolution in LMR cathode at ambient temperature, their behavior under a mildly elevated temperature (up to ∼100 °C), with or without electrochemical driving force, remains largely unexplored. Here we show a systematic study of the thermally driven surface-to-bulk redox coupling effect in charged Li1.2Ni0.15Co0.1Mn0.55O2. We for the first time observed a charge transfer between the bulk oxygen anions and the surface transition metal cations under ∼100 °C, which is attributed to the thermally driven redistribution of Li ions. This finding highlights the nonequilibrium state and dynamic nature of the LMR material at deeply delithiated state upon a mild temperature perturbation.

18.
Arch Pharm Res ; 42(8): 695-703, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31327152

RESUMO

Neuroinflammation is a specific or nonspecific immunological reaction in the central nervous system that is induced by microglia activation. Appropriate regulation of activated microglial cells is therefore important for inhibiting neuroinflammation. Hesperetin is a natural flavanone and an aglycone of hesperidin that is found in citrus fruits. Hesperetin reportedly possesses anti-inflammatory, anti-cancer, and antioxidant effects. However, the anti-neuroinflammatory effects of hesperetin on microglia are still unknown. Here, we investigated the anti-neuroinflammatory effects of hesperetin on lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We found that hesperetin strongly inhibited nitric oxide production and expression of inducible nitric oxide synthase in LPS-stimulated BV-2 microglial cells. Hesperetin also significantly reduced secretion of inflammatory cytokines including interleukin (IL)-1ß and IL-6. Furthermore, hesperetin down-regulated the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase, exerting anti-inflammatory effects. Hesperetin suppressed astrocyte and microglia activation in the LPS-challenged mouse brain. Collectively, our findings indicate that hesperetin inhibits microglia-mediated neuroinflammation and could be a prophylactic treatment for neurodegenerative diseases.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Citocinas/antagonistas & inibidores , Hesperidina/farmacologia , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/química , Linhagem Celular , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Hesperidina/química , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Relação Estrutura-Atividade
19.
Phys Rev Lett ; 122(14): 147601, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050473

RESUMO

Ba(Ni_{1-x}Co_{x})_{2}As_{2} is a structural homologue of the pnictide high temperature superconductor, Ba(Fe_{1-x}Co_{x})_{2}As_{2}, in which the Fe atoms are replaced by Ni. Superconductivity is highly suppressed in this system, reaching a maximum T_{c}=2.3 K, compared to 24 K in its iron-based cousin, and the origin of this T_{c} suppression is not known. Using x-ray scattering, we show that Ba(Ni_{1-x}Co_{x})_{2}As_{2} exhibits a unidirectional charge density wave (CDW) at its triclinic phase transition. The CDW is incommensurate, exhibits a sizable lattice distortion, and is accompanied by the appearance of α Fermi surface pockets in photoemission [B. Zhou et al., Phys. Rev. B 83, 035110 (2011)PRBMDO1098-012110.1103/PhysRevB.83.035110], suggesting it forms by an unconventional mechanism. Co doping suppresses the CDW, paralleling the behavior of antiferromagnetism in iron-based superconductors. Our study demonstrates that pnictide superconductors can exhibit competing CDW order, which may be the origin of T_{c} suppression in this system.

20.
Redox Biol ; 24: 101184, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30974318

RESUMO

FoxO has been proposed to play a role in the promotion of insulin resistance, and inflammation. FoxO is a pro-inflammatory transcription factor that is a key mediator of generation of inflammatory cytokines such as IL-1ß in the liver. However, the detailed association of FoxO6 with insulin resistance and age-related inflammation has not been fully documented. Here, we showed that FoxO6 was elevated in the livers of aging rats and obese mice that exhibited insulin resistance. In addition, virus-mediated FoxO6 activation led to insulin resistance in mice with a notable increase in PAR2 and inflammatory signaling in the liver. On the other hand, FoxO6-KO mice showed reduced PAR2 signaling with a decrease in inflammatory cytokine expression and elevated insulin signaling. Because FoxO6 is closely associated with abnormal production of IL-1ß in the liver, we focused on the FoxO6/IL-1ß/PAR2 axis to further examine mechanisms underlying FoxO6-mediated insulin resistance and inflammation in the liver. In vitro experiments showed that FoxO6 directly binds to and elevates IL-1ß expression. In turn, IL-1ß treatment elevated the protein levels of PAR2 with a significant decrease in hepatic insulin signaling, whereas PAR2-siRNA treatment abolished these effects. However, PAR2-siRNA treatment had no effect on IL-1ß expression induced by FoxO6, indicating that IL-1ß may not be downstream of PAR2. Taken together, we assume that FoxO6-mediated IL-1ß is involved in hepatic inflammation and insulin resistance via TF/PAR2 pathway in the liver.


Assuntos
Fatores de Transcrição Forkhead/genética , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Interleucina-1beta/metabolismo , Fígado/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Citocinas/metabolismo , Diabetes Mellitus Experimental , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Células Hep G2 , Humanos , Insulina/metabolismo , Masculino , Camundongos , Modelos Biológicos , Obesidade/etiologia , Obesidade/metabolismo , Ligação Proteica , Receptor PAR-2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...