Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Biosci ; 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35507843

RESUMO

Objective: The quantitative reverse transcription polymerase chain reaction (qPCR) is the most accurate and reliable technique for analysis of gene expression. Endogenous reference genes (RGs) have been used to normalize qPCR data, although their expression may vary in different tissues and experimental conditions. Therefore, verification of the stability of RGs in selected samples is a prerequisite for reliable results. Therefore, we attempted to identify the most stable RGs in the hypothalamic-pituitary-gonadal (HPG) axis in sows. Methods: The cycle threshold values of nine commonly used RGs (18S, HPRT1, GAPDH, RPL4, PPIA, B2M, YWHAZ, ACTB, and SDHA) from HPG axis-related tissues in the domestic sows in the different stages of estrus cycle were analyzed using two RG-finding programs, geNorm and Normfinder, to rank the stability of the pool of RGs. In addition, the effect of the most and least stable RGs was examined by normalization of the target gene, gonadotropin-releasing hormone (GnRH), in the hypothalamus. Results: PPIA, HPRT1, and YWHAZ were the most stable RGs in the HPG axis-related tissues in sows regardless of the stages of estrus cycle. In contrast, traditional RGs, including 18S and ACTB, were found to be the least stable under these experimental conditions. In particular, in the normalization of GnRH expression in the hypothalamus against several stable RGs, PPIA, HPRT1, and YWHAZ, could generate significant (P < 0.05) elevation of GnRH in the preovulatory phase compared to the luteal phase, but the traditional RGs with the least stability (18S and ACTB) did not show a significant difference between groups. Conclusion: s: These results indicate the importance of verifying RG stability prior to commencing research and may contribute to experimental design in the field of animal reproductive physiology as reference data.

2.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008901

RESUMO

Abnormalities in animals cloned via somatic cell nuclear transfer (SCNT) have been reported. In this study, to produce bomb-sniffing dogs, we successfully cloned four healthy dogs through SCNT using the same donor genome from the skin of a male German shepherd old dog. Veterinary diagnosis (X-ray/3D-CT imaging) revealed that two cloned dogs showed normal phenotypes, whereas the others showed abnormal shortening of the mandible (brachygnathia inferior) at 1 month after birth, even though they were cloned under the same conditions except for the oocyte source. Therefore, we aimed to determine the genetic cause of brachygnathia inferior in these cloned dogs. To determine the genetic defects related to brachygnathia inferior, we performed karyotyping and whole-genome sequencing (WGS) for identifying small genetic alterations in the genome, such as single-nucleotide variations or frameshifts. There were no chromosomal numerical abnormalities in all cloned dogs. However, WGS analysis revealed variants of Wnt signaling pathway initiators (WNT5B, DVL2, DACT1, ARRB2, FZD 4/8) and cadherin (CDH11, CDH1like) in cloned dogs with brachygnathia inferior. In conclusion, this study proposes that brachygnathia inferior in cloned dogs may be associated with variants in initiators and/or regulators of the Wnt/cadherin signaling pathway.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Múltiplas/veterinária , Clonagem de Organismos , Via de Sinalização Wnt/genética , Anormalidades Múltiplas/sangue , Anormalidades Múltiplas/diagnóstico , Animais , Contagem de Células Sanguíneas , Aberrações Cromossômicas , Cães , Comportamento Alimentar , Ontologia Genética , Redes Reguladoras de Genes , Estudos de Associação Genética , Cariotipagem , Masculino , Repetições de Microssatélites/genética , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
3.
Stem Cell Res Ther ; 12(1): 502, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521481

RESUMO

BACKGROUND: Although the immunomodulatory properties of mesenchymal stem cells (MSCs) have been highlighted as a new therapy for autoimmune diseases, including rheumatoid arthritis (RA), the disease-specific characteristics of MSCs derived from elderly RA patients are not well understood. METHODS: We established MSCs derived from synovial fluid (SF) from age-matched early (average duration of the disease: 1.7 years) and long-standing (average duration of the disease: 13.8 years) RA patients (E-/L-SF-MSCs) and then analyzed the MSC characteristics such as stemness, proliferation, cellular senescence, in vitro differentiation, and in vivo immunomodulatory properties. RESULTS: The presence of MSC populations in the SF from RA patients was identified. We found that L-SF-MSCs exhibited impaired proliferation, intensified cellular senescence, reduced immunomodulatory properties, and attenuated anti-arthritic capacity in an RA animal model. In particular, E-SF-MSCs demonstrated cellular senescence progression and attenuated immunomodulatory properties similar to those of L-SF-MSC in an RA joint-mimetic milieu due to hypoxia and pro-inflammatory cytokine exposure. Due to a long-term exposure to the chronic inflammatory milieu, cellular senescence, attenuated immunomodulatory properties, and the loss of anti-arthritic potentials were more often identified in SF-MSCs in a long-term RA than early RA. CONCLUSION: We conclude that a chronic RA inflammatory milieu affects the MSC potential. Therefore, this work addresses the importance of understanding MSC characteristics during disease states prior to their application in patients.


Assuntos
Artrite Reumatoide , Células-Tronco Mesenquimais , Idoso , Animais , Artrite Reumatoide/terapia , Humanos , Imunomodulação , Lactente , Inflamação , Líquido Sinovial
4.
Biomed Res Int ; 2021: 4604856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527737

RESUMO

IFN-γ licensing to mesenchymal stem cells (MSCs) is applied to enhance the therapeutic potential of MSCs. However, although the features of MSCs are affected by several stimuli, little information is available on changes to the therapeutic potential of IFN-γ-licensed differentiated MSCs during xenogeneic applications. Therefore, the present study is aimed at clarifying the effects of adipogenic/osteogenic differentiation and IFN-γ licensing on the in vitro immunomodulatory and migratory properties of porcine bone marrow-derived MSCs in xenogeneic applications using human peripheral blood mononuclear cells (PBMCs). IFN-γ licensing in differentiated MSCs lowered lineage-specific gene expression but did not affect MSC-specific cell surface molecules. Although indoleamine 2,3 deoxygenase (IDO) activity and expression were increased after IFN-γ licensing in undifferentiated MSCs, they were reduced after differentiation. IFN-γ licensing to differentiated MSCs elevated the reduced IDO expression in differentiated MSCs; however, the increase was not sufficient to reach to the level achieved by undifferentiated MSCs. During a mixed lymphocyte reaction with quantification of TNF-α concentration, proliferation and activation of xenogeneic PBMCs were suppressed by undifferentiated MSCs but inhibited to a lesser extent by differentiated MSCs. IFN-γ licensing increasingly suppressed proliferation of PBMCs in undifferentiated MSCs but it was incapable of elevating the reduced immunosuppressive ability of differentiated MSCs. Migratory ability through a scratch assay and gene expression study was reduced in differentiated MSCs than their undifferentiated counterparts; IFN-γ licensing was unable to enhance the reduced migratory ability in differentiated MSCs. Similar results were found in a Transwell system with differentiated MSCs in the upper chamber toward xenogeneic PBMCs in the lower chamber, despite IFN-γ licensing increased the migratory ability of undifferentiated MSCs. Overall, IFN-γ licensing did not enhance the reduced immunomodulatory and migratory properties of differentiated MSCs in a xenogeneic application. This study provides a better understanding of the ways in which MSC therapy can be applied.


Assuntos
Interferon gama/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Xenoenxertos/metabolismo , Humanos , Imunomodulação/efeitos dos fármacos , Interferon gama/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/efeitos dos fármacos , Suínos , Fator de Necrose Tumoral alfa/metabolismo
5.
J Vet Sci ; 22(5): e62, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34423600

RESUMO

BACKGROUND: Canine mammary gland tumor (MGT) is the most common cancer in aged female dogs. Although it's important to identify reliable metastasis or prognostic factors by evaluating related to cell division, adhesion, and cancer stem cell-related transcription factor (TF) in metastasis-induced canine MGT, but there are limited studies. OBJECTIVES: We aimed to identify metastasis prognostic factors and cancer stem cell-TFs in canine MGTs. METHODS: Age-matched female dogs diagnosed with MGT only were classified into metastatic and non-metastatic groups by histopathological staining of MGT tissues. The mRNA levels of cancer prognostic metastasis molecular factors (E-cadherin, ICAM-1, PRR14, VEGF, HPRT1, RPL4 and hnRNP H) and cancer stem cell-related TFs (Oct4, Sox2, and Nanog) were compared between metastatic and non-metastatic canine MGT tissues using qRT-PCR analysis. RESULTS: The mRNA levels of ICAM-1, PRR14, VEGF, hnRNP H, Oct4, Sox2, and Nanog in metastatic MGT group were significantly higher than those in non-metastatic MGT group. However, mRNA level of RPL4 was significantly lower in metastatic MGT group. Loss of E-cadherin and HPRT1 was observed in the metastatic MGT group but it was not significant. CONCLUSIONS: Consistent expression patterns of all metastasis-related factors showing elevation in ICAM-1, PRR14, VEGF, hnRNP H, Oct4, Sox2, and Nanog, but decreases in RPL4 levels occurred in canine MGT tissues, which was associated with metastasis. Thus, these cancer prognostic metastasis factors and TFs of cancer stem cells, except for E-cadherin and HPRT1, can be used as reliable metastasis factors for canine MGT and therapeutic strategy.


Assuntos
Doenças do Cão/genética , Neoplasias Mamárias Animais/genética , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética , Animais , Doenças do Cão/metabolismo , Cães , Feminino , Neoplasias Mamárias Animais/metabolismo , Prognóstico , Fatores de Transcrição/metabolismo
6.
Biomed Res Int ; 2021: 5540877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337022

RESUMO

Mesenchymal stem cells (MSCs) are valuable candidates in tissue engineering and stem cell-based therapy. Traditionally, MSCs derived from various tissues have been successfully expanded in vitro using adherent culture plates commonly called as monolayer two-dimensional (2D) cultures. Recently, many studies demonstrated that stemness and multilineage differentiation potential could be enhanced to greater extent when MSCs are cultured as suspended aggregates by means of three-dimensional (3D) culturing techniques. However, there are limited reports on changed mitochondrial metabolism on 3D spheroid formation of MSCs. Therefore, the present study was aimed at investigating the stemness, differentiation potential, and mitochondrial metabolism capacity of 3D dental pulp-derived MSC (DPSC) spheroids in comparison to monolayer cultured DPSCs. We isolated dental pulp-derived MSCs (DPSCs) and successfully developed a 3D culture system which facilitated the formation of MSC spheroids. The cell aggregation was observed after 2 hours, and spheroids were formed after 24 hours and remained in shape for 72 hours. After spheroid formation, the levels of pluripotent markers increased along with enhancement in adipogenic and osteogenic potential compared to 2D cultured control cells. However, decreased proliferative capacity, cell cycle arrest, and elevated apoptosis rate were observed with the time course of the 3D culture except for the initial 24-hour aggregation. Furthermore, oxygen consumption rates of living cells decreased with the time course of the aggregation except for the initial 24 hours. Overall, our study indicated that the short-term 3D culture of MSCs could be a suitable alternative to culture the cells.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/citologia , Esferoides Celulares/citologia , Adipogenia , Apoptose , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Ciclo Celular , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Consumo de Oxigênio , Células-Tronco Pluripotentes/metabolismo , Esferoides Celulares/metabolismo
7.
Biomedicines ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670230

RESUMO

One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.

8.
Int J Med Sci ; 18(5): 1259-1268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33526987

RESUMO

Background: Multipotent and immune privileged properties of mesenchymal stem cells (MSCs) were investigated for the treatment of various clinical diseases. For the years, many researches into the animal studies evaluated human stem cell therapeutic capacity related to the regenerative medicine. However, there were limited reports on immune privileged properties of human MSCs in animal studies. The present study investigated hematological and biochemical parameter and lymphocyte subset in mini-pigs following human MSCs transplantation as a means of validation of reliability that influence the animal test results. Methods: The miniature pigs were transplanted with human MSCs seeded with scaffold. After transplantation, all animals were evaluated by CBC, biochemistry and lymphocyte subset test. After 9 weeks, all pigs were sacrificed and organs were histologically analyzed. Results: CBC test showed that levels of RBC were decreased and reticulocyte, WBC and neutrophil were increased in transient state initially after transplantation, but returned to normal value. The proportion of B lymphocyte and cytotoxic T cell were also initially enhanced within the normal range temporarily. The female and male miniature pigs showed normal ranges for blood chemistry assessments. During the 9 weeks post-operative period, the animals showed a continuous increase in body weight and length. Furthermore, no abnormal findings were observed from the histological analysis of sacrificed pigs. Conclusions: Overall, miniature pigs transplanted with human MSCs seeded with scaffold were found to have physiologically similar results to normal animals. This result might be a reliable indicator of the animal experiments using miniature pigs with human MSCs.


Assuntos
Privilégio Imunológico , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/imunologia , Porco Miniatura/imunologia , Animais , Contagem de Células Sanguíneas , Feminino , Humanos , Masculino , Modelos Animais , Medicina Regenerativa/métodos , Reprodutibilidade dos Testes , Suínos , Tecidos Suporte , Transplante Heterólogo
9.
BMC Oral Health ; 21(1): 15, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413268

RESUMO

BACKGROUND: The dentin is a tissue, which is formed by odontoblasts at the pulp interface of the teeth that supports the enamel. Odontoblasts, the cranial neural crest cells are derived from ectodermal mesenchymal stem cells (MSCs) and are long and polarized cells. They are present at the outer surface of dentin and play a prominent role about dentin formation. Recently, attention has been focused on induction of odontoblast using various type of MSCs and effects of the 17ß-estradiol supplementation. In this study, we establish an efficient odonto/osteoblast differentiation protocol using 17ß-estradiol supplementation while comparing the odonto/osteoblast ability of various dental MSCs. METHODS: Same donor derived four types of dental MSCs namely dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAP), dental follicle stem cells (DFSCs), and periodontal ligament stem cells (PDLSCs) were evaluated for their stemness characteristics and potency towards odonto/osteoblast (Induced odonto/osteoblast) differentiation. Then 17ß-estradiol supplementation of 0 and 10 µM was applied to the odonto/osteoblast differentiation media for 14 days respectively. Furthermore, mRNA and protein levels of odonto/osteoblast markers were evaluated. RESULTS: All of the experimental groups displayed stemness characteristics by showing adipocyte and chondrocyte differentiation abilities, expression for cell surface markers and cell proliferation capacity without any significant differences. Moreover, all dental derived MSCs were shown to have odonto/osteoblast differentiation ability when cultured under specific conditions and also showed positive expression for odontoblast markers at both mRNA and protein level. Among all, DPSCs revealed the higher differentiation potential than other dental MSCs. Furthermore, odonto/osteoblast differentiation potential was enhanced by supplementing the differentiation media with 17ß-estradiol (E2). CONCLUSIONS: Thus, DPSCs possess higher odonto/osteogenic potential than the SCAPs, DFSCs, PDLSCs and their differentiation capacity can by further enhanced under E2 supplementation.


Assuntos
Polpa Dentária , Osteogênese , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Estradiol/farmacologia , Células-Tronco
10.
Asian-Australas J Anim Sci ; 33(12): 2021-2030, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32819081

RESUMO

OBJECTIVE: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. METHODS: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. RESULTS: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. CONCLUSION: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.

11.
Cells ; 9(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443752

RESUMO

The wrong grant number was erroneously entered in the original manuscript and needs to be changed from NRF-2017R1D1A1B03035677 to NRF-2019R1I1A3A01060073 in [...].

12.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235681

RESUMO

Diabetes is a metabolic disease which affects not only glucose metabolism but also lipid and protein metabolism. It encompasses two major types: type 1 and 2 diabetes. Despite the different etiologies of type 1 and 2 diabetes mellitus (T1DM and T2DM, respectively), the defining features of the two forms are insulin deficiency and resistance, respectively. Stem cell therapy is an efficient method for the treatment of diabetes, which can be achieved by differentiating pancreatic ß-like cells. The consistent generation of glucose-responsive insulin releasing cells remains challenging. In this review article, we present basic concepts of pancreatic organogenesis, which intermittently provides a basis for engineering differentiation procedures, mainly based on the use of small molecules. Small molecules are more auspicious than any other growth factors, as they have unique, valuable properties like cell-permeability, as well as a nonimmunogenic nature; furthermore, they offer immense benefits in terms of generating efficient functional beta-like cells. We also summarize advances in the generation of stem cell-derived pancreatic cell lineages, especially endocrine ß-like cells or islet organoids. The successful induction of stem cells depends on the quantity and quality of available stem cells and the efficient use of small molecules.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus/terapia , Células Secretoras de Insulina/citologia , Bibliotecas de Moléculas Pequenas/farmacologia , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Animais , Diabetes Mellitus/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo
13.
Cells ; 9(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120836

RESUMO

In the last few decades, stem cell therapy has grown as a boon for many pathological complications including female reproductive disorders. In this review, a brief description of available strategies that are related to stem cell-based in vitro oocyte-like cell (OLC) development are given. We have tried to cover all the aspects and latest updates of the in vitro OLC developmental methodologies, marker profiling, available disease models, and in vivo efficacies, with a special focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) usage. The differentiation abilities of both the ovarian and non-ovarian stem cell sources under various induction conditions have shown different effects on morphological alterations, proliferation- and size-associated developments, hormonal secretions under gonadotropic stimulations, and their neo-oogenesis or folliculogenesis abilities after in vivo transplantations. The attainment of characters like oocyte-like morphology, size expansion, and meiosis initiation have been found to be major obstacles during in vitro oogenesis. A number of reports have either lacked in vivo studies or have shown their functional incapability to produce viable and healthy offspring. Though researchers have gained many valuable insights regarding in vitro gametogenesis, still there are many things to do to make stem cell-derived OLCs fully functional.


Assuntos
Oócitos/citologia , Transplante de Células-Tronco/tendências , Diferenciação Celular , Feminino , Humanos , Infertilidade Feminina/terapia , Ovário/citologia , Células-Tronco/citologia
15.
Asian-Australas J Anim Sci ; 33(3): 515-524, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32054231

RESUMO

OBJECTIVE: Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. METHODS: Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. RESULTS: Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. CONCLUSION: Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.

16.
Biomed Res Int ; 2019: 3093545, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240211

RESUMO

Long-term expansion of mesenchymal stem cells (MSCs) under defined culture conditions is necessary in human stem cell therapy. However, it alters the characteristics of MSCs. Since quantitative real time polymerase chain reaction (qRT-PCR) is widely used as one of the key analytical methods for comparative characterization, the validation of reference genes (RGs) for normalization under each experimental condition is important to achieve reliable qRT-PCR results. Therefore, the most stable RGs for long-term expanded bone marrow- and umbilical cord blood-derived MSCs (BM-MSCs and UCB-MSCs) under defined culture conditions for up to 20 passages were evaluated. The more apparent alterations in characteristics such as differentiation capacity, proliferation, senescence, and the expression of RGs were noted in BM-MSCs than UCB-MSCs during long-term expansion. The RG validation programs (GeNorm and NormFinder) suggested that PPIA, HPRT1, and YWHAZ were suitable for normalization in qRT-PCR regardless of MSC types and long-term culture expansion, and the traditional RGs (ACTB and GAPDH) were less stable in long-term expanded MSCs. In addition, the use of these RGs for normalization of OCT4 expression in long-term expanded BM-MSCs showed that a less stable RG (GAPDH) showed contrasting data compared to other RGs. Therefore, the use of RGs such as PPIA, HPRT1, and YWHAZ for normalization in qRT-PCR experiments is highly recommended for long-term expanded MSCs to generate accurate and reliable data.


Assuntos
Proteínas 14-3-3/genética , Expressão Gênica , Hipoxantina Fosforribosiltransferase/genética , Células-Tronco Mesenquimais/metabolismo , Peptidilprolil Isomerase/genética , RNA Mensageiro/metabolismo , Proteínas 14-3-3/metabolismo , Diferenciação Celular , Proliferação de Células , Perfilação da Expressão Gênica , Humanos , Hipoxantina Fosforribosiltransferase/metabolismo , Masculino , Peptidilprolil Isomerase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência
17.
Biosci Rep ; 39(5)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31015367

RESUMO

The present study was carried out to investigate and compare the in vitro differentiation potential of mesenchymal stem cells (MSCs) isolated from human dental tissues (pulp, papilla, and follicle) of the same donor. MSCs were isolated from dental tissues (pulp, papilla, and follicle) following digestion method and were analyzed for the expression of pluripotent markers and cell surface markers. All three types of MSCs were evaluated for their potential to differentiate into mesenchymal lineages. Further, the MSCs were differentiated into pancreatic ß cell-like cells using multistep protocol and characterized for the expression of pancreatic lineage specific markers. Functional properties of differentiated pancreatic ß cell-like cells were assessed by dithizone staining and glucose challenge test. All three types of MSCs showed fibroblast-like morphology upon culture and expressed pluripotent, and mesenchymal cell surface markers. These MSCs were successfully differentiated into mesenchymal lineages and transdifferentiated into pancreatic ß cell-like cells. Among them, dental follicle derived MSCs exhibits higher transdifferentiation potency toward pancreatic lineage as evaluated by the expression of pancreatic lineage specific markers both at mRNA and protein level, and secreted higher insulin upon glucose challenge. Additionally, follicle-derived MSCs showed higher dithizone staining upon differentiation. All three types of MSCs from a single donor possess similar cellular properties and can differentiate into pancreatic lineage. However, dental follicle derived MSCs showed higher potency toward pancreatic lineage than pulp and papilla derived MSCs, suggesting their potential application in future stem cell based therapy for the treatment of diabetes.


Assuntos
Antígenos de Diferenciação , Diferenciação Celular , Polpa Dentária/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Adolescente , Células Cultivadas , Polpa Dentária/citologia , Humanos , Células Secretoras de Insulina/citologia , Masculino , Células-Tronco Mesenquimais/citologia
18.
Cell Tissue Res ; 377(2): 229-243, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30945004

RESUMO

The present study evaluates the transdifferentiation potential of different region-derived same donor Wharton's jelly MSCs (WJMSCs) into functional smooth muscle-like cells (SMLCs). All regions showed baseline expression for early smooth muscle cell (SMC) markers (αSMA and SM22-α) whereas mid marker CALPONIN gradually reduced during in vitro culture expansion and late marker myosin heavy chain type-11 (MHY-11) was completely absent. Furthermore, WJMSCs were induced to SMLCs using DMEM containing 10% FBS supplemented with different concentrations/combinations of TGF-ß1 and PDGF-BB under normoxia (20% O2) condition. Three treatment groups namely group A: 2.5 ng/ml TGF-ß1, group B: 5 ng/ml PDGF-BB and group C: 2.5 ng/ml TGF-ß1 + 5 ng/ml PDGF-BB were used for the induction of WJMSCs into SMLCs. Cells were evaluated for SMC-specific marker expression at different time intervals. Finally, selection of the SMC-specific highly potent region along with the most suitable treatment group was done on the basis of highest outcome in terms of SMC-specific marker expression and functional competence of transdifferentiated cells. Among all regions, baby region-derived WJMSCs (B-WJMSCs) exhibited highest SMC marker expression and functional ability. To mimic the in vivo physiological conditions, hypoxic conditions (3% O2) were used to evaluate the effect of low oxygen on the SMLC differentiation potential of selected WJMSCs using previously used same parameters. Annexin-V assay was performed to check the effect of cytokines and different oxygen concentrations, which revealed no significant differences. It was concluded that different induction conditions have different but positive effects on the functional SMLC differentiation ability of WJMSCs.


Assuntos
Diferenciação Celular , Transdiferenciação Celular , Células-Tronco Mesenquimais , Miócitos de Músculo Liso , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Cordão Umbilical/citologia , Geleia de Wharton/citologia
19.
Reprod Sci ; 26(5): 669-682, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29986624

RESUMO

Porcine mesenchymal stem cells (MSCs) are similar to human MSCs, hence considered a valuable model for assessing potential for cell therapy. Porcine adipose-derived MSCs (AD-MSCs) and endometrial stromal MSCs (EMSCs) displayed fibroblast-like morphology and were positive for MSC markers CD73, CD90, and CD105 and negative for hematopoietic markers CD34 and CD45. The EMSCs had similar or slightly higher growth rate compared to AD-MSCs, and similar percentage of cells of both EMSCs and AD-MSCs were at G0/G1 and G2/M phases; however, EMSCs had significantly ( P < .05) higher percentage of cells at S phase of cell cycle than AD-MSCs. Transdifferentiation ability to cardiomyocyte-like cells was confirmed in differentiated cells by the expression of lineage-specific marker genes such as DES, ACTA2, cTnT, and ACTC1 by real-time quantitative polymerase chain reaction (RT-qPCR). Furthermore, cardiomyocyte-specific protein markers cTnT and ACTC1 were expressed in completely differentiated cells. Endodermal differentiation capacity of EMSCs to pancreatic ß cell-like cells was evident with the changes in morphology and the expression of ß-cell-specific marker genes such as PDX1, GLUT2, SST, NKX6.1, PAX4, and NGN3 as analyzed by RT-qPCR. The differentiated cells secreted insulin and C-peptide upon glucose challenge and also they expressed insulin, PDX1, PAX4, NGN3, and GLUT2 at protein level as assessed by immunostaining confirming the successful differentiation to ß cell-like cells. Porcine EMSCs possess all the characteristics of MSCs and are suitable model for studying molecular mechanisms of cellular differentiation.


Assuntos
Diferenciação Celular , Endoglina/metabolismo , Endométrio/fisiologia , Células Secretoras de Insulina/fisiologia , Células-Tronco Mesenquimais/fisiologia , Miócitos Cardíacos/fisiologia , Tecido Adiposo/citologia , Animais , Endométrio/citologia , Feminino , Técnicas In Vitro , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Miócitos Cardíacos/citologia , Sus scrofa
20.
J Cell Physiol ; 234(4): 3933-3947, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30343506

RESUMO

Following success of pancreatic islet transplantation in the treatment of Type I diabetes mellitus, there is a growing interest in using cell-based treatment approaches. However, severe shortage of donor islets-pancreas impeded the growth, and made researchers to search for an alternative treatment approaches. In this context, recently, stem cell-based therapy has gained more attention. The current study demonstrated that epigenetic modification improves the in vitro differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs) into pancreatic endocrine-like cells. Here we used two histone deacetylase (HDAC) inhibitors namely trichostatin A (TSA) and TMP269. TSA inhibits both class I and II HDACs whereas TMP269 inhibits only class IIa HDACs. WJMSCs were differentiated using a multistep protocol in a serum-free condition with or without TSA pretreatment. A marginal improvement in differentiation was observed after TSA pretreatment though it was not significant. However, exposing endocrine precursor-like cells derived from WJMSCs to TMP269 alone has significantly improved the differentiation toward insulin-producing cells. Further, increase in the expression of paired box 4 (PAX4), insulin, somatostatin, glucose transporter 2 (GLUT2), MAF bZIP transcription factor A (MAFA), pancreatic duodenal homeobox 1 (PDX-1), and NKX6.1 was observed both at messenger RNA and protein levels. Nevertheless, TMP269-treated cells secreted higher insulin upon glucose challenge, and demonstrated increased dithizone staining. These findings suggest that TMP269 may improve the in vitro differentiation of WJMSCs into insulin-producing cells.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Cordão Umbilical/citologia , Geleia de Wharton/citologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Recém-Nascido , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Via Secretória , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...