Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
ACS Appl Mater Interfaces ; 12(20): 22778-22788, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338494


Devices driven by above-equilibrium "hot" electrons are appealing for photocatalytic technologies, such as in situ H2O2 synthesis, but currently suffer from low (<1%) overall quantum efficiencies. Gold nanostructures excited by visible light generate hot electrons that can inject into a neighboring semiconductor to drive electrochemical reactions. Here, we designed and studied a metal-insulator-metal (MIM) structure of Au nanoparticles on a ZnO/TiO2/Al film stack, deposited through room-temperature, lithography-free methods. Light absorption, electron injection efficiency, and photocatalytic yield in this device are superior in comparison to the same stack without Al. Our device absorbs >60% of light at the Au localized surface plasmon resonance (LSPR) peak near 530 nm-a 5-fold enhancement in Au absorption due to critical coupling to an Al film. Furthermore, we show through ultrafast pump-probe spectroscopy that the Al-coupled samples exhibit a nearly 5-fold improvement in hot-electron injection efficiency as compared to a non-Al device, with the hot-electron lifetimes extending to >2 ps in devices photoexcited with fluence of 0.1 mJ cm-2. The use of an Al film also enhances the photocatalytic yield of H2O2 more than 3-fold in a visible-light-driven reactor. Altogether, we show that the critical coupling of Al films to Au nanoparticles is a low-cost, lithography-free method for improving visible-light capture, extending hot-carrier lifetimes, and ultimately increasing the rate of in situ H2O2 generation.

Adv Mater ; 32(23): e1906478, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32347620


Above-equilibrium "hot"-carrier generation in metals is a promising route to convert photons into electrical charge for efficient near-infrared optoelectronics. However, metals that offer both hot-carrier generation in the near-infrared and sufficient carrier lifetimes remain elusive. Alloys can offer emergent properties and new design strategies compared to pure metals. Here, it is shown that a noble-transition alloy, Aux Pd1- x , outperforms its constituent metals concerning generation and lifetime of hot carriers when excited in the near-infrared. At optical fiber wavelengths (e.g., 1550 nm), Au50 Pd50 provides a 20-fold increase in the number of ≈0.8 eV hot holes, compared to Au, and a threefold increase in the carrier lifetime, compared to Pd. The discovery that noble-transition alloys can excel at hot-carrier generation reveals a new material platform for near-infrared optoelectronic devices.