Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350439

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
J Phys Condens Matter ; 32(31): 315402, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32235042

RESUMO

In this work we present a tight-binding model that allows to describe with a minimal amount of parameters the band structure of exciton-polariton lattices. This model based on s and p non-orthogonal photonic orbitals faithfully reproduces experimental results reported for polariton graphene ribbons. We analyze in particular the influence of the non-orthogonality, the inter-orbitals interaction and the photonic spin-orbit coupling on the polarization and dispersion of bulk bands and edge states.

3.
Nat Nanotechnol ; 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32284570

RESUMO

Low-frequency vibration modes of biological particles, such as proteins, viruses and bacteria, involve coherent collective vibrations at frequencies in the terahertz and gigahertz domains. These vibration modes carry information on their structure and mechanical properties, which are good indicators of their biological state. In this work, we harnessed a particular regime in the physics of coupled mechanical resonators to directly measure these low-frequency mechanical resonances of a single bacterium. We deposit the bacterium on the surface of an ultrahigh frequency optomechanical disk resonator in ambient conditions. The vibration modes of the disk and bacterium hybridize when their associated frequencies are similar. We developed a general theoretical framework to describe this coupling, which allows us to retrieve the eigenfrequencies and mechanical loss of the bacterium low-frequency vibration modes (quality factor). Additionally, we analysed the effect of hydration on these vibrational modes. This work demonstrates that ultrahigh frequency optomechanical resonators can be used for vibrational spectrometry with the unique capability to obtain information on single biological entities.

4.
Nat Commun ; 10(1): 3869, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455770

RESUMO

Exciton-polaritons in semiconductor microcavities constitute the archetypal realization of a quantum fluid of light. Under coherent optical drive, remarkable effects such as superfluidity, dark solitons or the nucleation of vortices have been observed, and can be all understood as specific manifestations of the condensate collective excitations. In this work, we perform a Brillouin scattering experiment to measure their dispersion relation [Formula: see text] directly. The results, such as a speed of sound which is apparently twice too low, cannot be explained upon considering the polariton condensate alone. In a combined theoretical and experimental analysis, we demonstrate that the presence of an excitonic reservoir alongside the polariton condensate has a dramatic influence on the characteristics of the quantum fluid, and explains our measurement quantitatively. This work clarifies the role of such a reservoir in polariton quantum hydrodynamics. It also provides an unambiguous tool to determine the condensate-to-reservoir fraction in the quantum fluid, and sets an accurate framework to approach ideas for polariton-based quantum-optical applications.

5.
Opt Express ; 27(9): 12182, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052762

RESUMO

An erratum is presented to correct for a typo in the appendix of the original article.

6.
Phys Rev Lett ; 122(11): 117402, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951355

RESUMO

We study ultracold dipolar excitons confined in a 10 µm trap of a double GaAs quantum well. Based on the local density approximation, we unveil for the first time the equation of state of excitons. Specifically, in this regime and below a critical temperature of about 1 K, we show that for a local density n∼(2-3)×10^{10} cm^{-2} a coherent quasicondensate phase forms in the inner region of the trap, encircled by a more dilute and normal component in the outer rim. Remarkably, this spatial arrangement correlates directly with the concentration of defects in the exciton density, which is strongly decreased in the quasicondensed region, consistent with a superfluid phase. Thus, our observations point towards a Berezinskii-Kosterlitz-Thouless crossover for two-dimensional excitons.

7.
Nano Lett ; 19(6): 3699-3706, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31026170

RESUMO

The control of quantum coupling between nano-objects is essential to quantum technologies. Confined nanostructures, such as cavities, resonators, or quantum dots, are designed to enhance interactions between electrons, photons, or phonons, giving rise to new properties, on which devices are developed. The nature and strength of these interactions are often measured indirectly on an assembly of dissimilar objects. Here, we adopt an innovative point of view by directly mapping the coupling of single nanostructures using scanning tunneling microscopy and spectroscopy (STM and STS). We take advantage of the unique capabilities of STM/STS to map simultaneously the nano-object's morphology and electronic density in order to observe in real space the electronic coupling of pairs of In(Ga)As/GaAs self-assembled quantum dots (QDs), forming quantum dot molecules (QDMs). Differential conductance maps d I/d V ( E, x, y) demonstrate the presence of an effective electronic coupling, leading to bonding and antibonding states, even for dissymmetric QDMs. The experimental results are supported by numerical simulations. The actual geometry of the QDMs is taken into account to determine the strength of the coupling, showing the crucial role of quantum dot size and pair separation for device growth optimization.

8.
Nat Mater ; 18(3): 213-218, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30783231

RESUMO

Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2-6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7-9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.


Assuntos
Fótons , Semicondutores , Luz
9.
Beilstein J Nanotechnol ; 9: 2306-2314, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202699

RESUMO

Background: Dielectric nanoantennas have recently emerged as an alternative solution to plasmonics for nonlinear light manipulation at the nanoscale, thanks to the magnetic and electric resonances, the strong nonlinearities, and the low ohmic losses characterizing high refractive-index materials in the visible/near-infrared (NIR) region of the spectrum. In this frame, AlGaAs nanoantennas demonstrated to be extremely efficient sources of second harmonic radiation. In particular, the nonlinear polarization of an optical system pumped at the anapole mode can be potentially boosted, due to both the strong dip in the scattering spectrum and the near-field enhancement, which are characteristic of this mode. Plasmonic nanostructures, on the other hand, remain the most promising solution to achieve strong local field confinement, especially in the NIR, where metals such as gold display relatively low losses. Results: We present a nonlinear hybrid antenna based on an AlGaAs nanopillar surrounded by a gold ring, which merges in a single platform the strong field confinement typically produced by plasmonic antennas with the high nonlinearity and low loss characteristics of dielectric nanoantennas. This platform allows enhancing the coupling of light to the nanopillar at coincidence with the anapole mode, hence boosting both second- and third-harmonic generation conversion efficiencies. More than one order of magnitude enhancement factors are measured for both processes with respect to the isolated structure. Conclusion: The present results reveal the possibility to achieve tuneable metamixers and higher resolution in nonlinear sensing and spectroscopy, by means of improved both pump coupling and emission efficiency due to the excitation of the anapole mode enhanced by the plasmonic nanoantenna.

10.
Nat Commun ; 9(1): 3475, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154484

RESUMO

The original version of this Article omitted the fourth author, Sara Ducci from Matériaux et Phénomènes Quantiques, Université Paris Diderot, CNRS UMR 7162, Sorbonne Paris-Cité, 10 rue Alice Domon et Léonie Duquet, Paris 75013, France. This mistake has been corrected in both the HTML and PDF versions of the Article.

11.
Opt Express ; 25(20): 24639-24649, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041409

RESUMO

Optomechanical systems based on nanophotonics are advancing the field of precision motion measurement, quantum control and nanomechanical sensing. In this context III-V semiconductors offer original assets like the heteroepitaxial growth of optimized metamaterials for photon/phonon interactions. GaAs has already demonstrated high performances in optomechanics but suffers from two photon absorption (TPA) at the telecom wavelength, which can limit the cooperativity. Here, we investigate TPA-free III-V semiconductor materials for optomechanics applications: GaAs lattice-matched In0.5Ga0.5P and Al0.4Ga0.6As. We report on the fabrication and optical characterization of high frequency (500-700 MHz) optomechanical disks made out of these two materials, demonstrating high optical and mechanical Q in ambient conditions. Finally we achieve operating these new devices as laser-sustained optomechanical self-oscillators, and draw a first comparative study with existing GaAs systems.

12.
Nano Lett ; 17(11): 6667-6675, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29035545

RESUMO

We present an effective method of determining the doping level in n-type III-V semiconductors at the nanoscale. Low-temperature and room-temperature cathodoluminescence (CL) measurements are carried out on single Si-doped GaAs nanowires. The spectral shift to higher energy (Burstein-Moss shift) and the broadening of luminescence spectra are signatures of increased electron densities. They are compared to the CL spectra of calibrated Si-doped GaAs layers, whose doping levels are determined by Hall measurements. We apply the generalized Planck's law to fit the whole spectra, taking into account the electron occupation in the conduction band, the bandgap narrowing, and band tails. The electron Fermi levels are used to determine the free electron concentrations, and we infer nanowire doping of 6 × 1017 to 1 × 1018 cm-3. These results show that cathodoluminescence provides a robust way to probe carrier concentrations in semiconductors with the possibility of mapping spatial inhomogeneities at the nanoscale.

13.
Phys Rev Lett ; 118(23): 233602, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644642

RESUMO

We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.

14.
Nat Nanotechnol ; 12(7): 663-667, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28507332

RESUMO

A strong limitation of linear optical quantum computing is the probabilistic operation of two-quantum-bit gates based on the coalescence of indistinguishable photons. A route to deterministic operation is to exploit the single-photon nonlinearity of an atomic transition. Through engineering of the atom-photon interaction, phase shifters, photon filters and photon-photon gates have been demonstrated with natural atoms. Proofs of concept have been reported with semiconductor quantum dots, yet limited by inefficient atom-photon interfaces and dephasing. Here, we report a highly efficient single-photon filter based on a large optical nonlinearity at the single-photon level, in a near-optimal quantum-dot cavity interface. When probed with coherent light wavepackets, the device shows a record nonlinearity threshold around 0.3 ± 0.1 incident photons. We demonstrate that 80% of the directly reflected light intensity consists of a single-photon Fock state and that the two- and three-photon components are strongly suppressed compared with the single-photon one.

15.
Phys Rev Lett ; 118(12): 127402, 2017 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-28388190

RESUMO

We study spatially indirect excitons of GaAs quantum wells, confined in a 10 µm electrostatic trap. Below a critical temperature of about 1 K, we detect macroscopic spatial coherence and quantized vortices in the weak photoluminescence emitted from the trap. These quantum signatures are restricted to a narrow range of density, in a dilute regime. They manifest the formation of a four-component superfluid, made by a low population of optically bright excitons coherently coupled to a dominant fraction of optically dark excitons.

17.
Nat Commun ; 8: 14267, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117394

RESUMO

Photonic lattices of mutually interacting indistinguishable cavities represent a cornerstone of collective phenomena in optics and could become important in advanced sensing or communication devices. The disorder induced by fabrication technologies has so far hindered the development of such resonant cavity architectures, while post-fabrication tuning methods have been limited by complexity and poor scalability. Here we present a new simple and scalable tuning method for ensembles of microphotonic and nanophotonic resonators, which enables their permanent collective spectral alignment. The method introduces an approach of cavity-enhanced photoelectrochemical etching in a fluid, a resonant process triggered by sub-bandgap light that allows for high selectivity and precision. The technique is presented on a gallium arsenide nanophotonic platform and illustrated by finely tuning one, two and up to five resonators. It opens the way to applications requiring large networks of identical resonators and their spectral referencing to external etalons.

18.
Opt Express ; 23(15): 19656-72, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367623

RESUMO

Whispering gallery modes in GaAs disk resonators reach half a million of optical quality factor. These high Qs remain still well below the ultimate design limit set by bending losses. Here we investigate the origin of residual optical dissipation in these devices. A Transmission Electron Microscope analysis is combined with an improved Volume Current Method to precisely quantify optical scattering losses by roughness and waviness of the structures, and gauge their importance relative to intrinsic material and radiation losses. The analysis also provides a qualitative description of the surface reconstruction layer, whose optical absorption is then revealed by comparing spectroscopy experiments in air and in different liquids. Other linear and nonlinear optical loss channels in the disks are evaluated likewise. Routes are given to further improve the performances of these miniature GaAs cavities.

19.
Nano Lett ; 15(10): 6290-4, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26325603

RESUMO

Bright single photon sources have recently been obtained by inserting solid-state emitters in microcavities. Accelerating the spontaneous emission via the Purcell effect allows both high brightness and increased operation frequency. However, achieving Purcell enhancement is technologically demanding because the emitter resonance must match the cavity resonance. Here, we show that this spectral matching requirement is strongly lifted by the phononic environment of the emitter. We study a single InGaAs quantum dot coupled to a micropillar cavity. The phonon assisted emission, which hardly represents a few percent of the dot emission at a given frequency in the absence of cavity, can become the main emission channel by use of the Purcell effect. A phonon-tuned single photon source with a brightness greater than 50% is demonstrated over a detuning range covering 10 cavity line widths (0.8 nm). The same concepts applied to defects in diamonds pave the way toward ultrabright single photon sources operating at room temperature.

20.
Nat Commun ; 6: 6236, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25687134

RESUMO

Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA