Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 60(11): 2277-2285, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31625145

RESUMO

OBJECTIVE: Monoallelic de novo gain-of-function variants in the voltage-gated sodium channel SCN8A are one of the recurrent causes of severe developmental and epileptic encephalopathy (DEE). In addition, a small number of de novo or inherited monoallelic loss-of-function variants have been found in patients with intellectual disability, autism spectrum disorder, or movement disorders. Inherited monoallelic variants causing either gain or loss-of-function are also associated with less severe conditions such as benign familial infantile seizures and isolated movement disorders. In all three categories, the affected individuals are heterozygous for a SCN8A variant in combination with a wild-type allele. In the present study, we describe two unusual families with severely affected individuals who inherited biallelic variants of SCN8A. METHODS: We identified two families with biallelic SCN8A variants by diagnostic gene panel sequencing. Functional analysis of the variants was performed using voltage clamp recordings from transfected ND7/23 cells. RESULTS: We identified three probands from two unrelated families with DEE due to biallelic SCN8A variants. Each parent of an affected individual carried a single heterozygous SCN8A variant and exhibited mild cognitive impairment without seizures. In both families, functional analysis demonstrated segregation of one allele with complete loss-of-function, and one allele with altered biophysical properties consistent with partial loss-of-function. SIGNIFICANCE: These studies demonstrate that SCN8A DEE may, in rare cases, result from inheritance of two variants, both of which exhibit reduced channel activity. In these families, heterozygosity for the dominant variants results in less severe disease than biallelic inheritance of two variant alleles. The clinical consequences of variants with partial and complete loss of SCN8A function are variable and likely to be influenced by genetic background.

2.
Brain ; 142(10): 3009-3027, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504254

RESUMO

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.

3.
Am J Med Genet A ; 179(12): 2447-2453, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31512363

RESUMO

Hartsfield syndrome is a rare clinical entity characterized by holoprosencephaly and ectrodactyly with the variable feature of cleft lip/palate. In addition to these symptoms patients with Hartsfield syndrome can show developmental delay of variable severity, isolated hypogonadotropic hypogonadism, central diabetes insipidus, vertebral anomalies, eye anomalies, and cardiac malformations. Pathogenic variants in FGFR1 have been described to cause phenotypically different FGFR1-related disorders such as Hartsfield syndrome, hypogonadotropic hypogonadism with or without anosmia, Jackson-Weiss syndrome, osteoglophonic dysplasia, Pfeiffer syndrome, and trigonocephaly Type 1. Here, we report three patients with Hartsfield syndrome from two unrelated families. Exome sequencing revealed two siblings harboring a novel de novo heterozygous synonymous variant c.1029G>A, p.Ala343Ala causing a cryptic splice donor site in exon 8 of FGFR1 likely due to gonadal mosaicism in one parent. The third case was a sporadic patient with a novel de novo heterozygous missense variant c.1868A>G, p.(Asp623Gly).

4.
BMC Cancer ; 19(1): 787, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395037

RESUMO

BACKGROUND: Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. METHODS: We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. RESULTS: Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. CONCLUSIONS: To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.

5.
Hum Mutat ; 40(12): 2393-2413, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31429998

RESUMO

N-methyl-D-aspartate receptors (NMDARs) mediate slow excitatory postsynaptic transmission in the central nervous system, thereby exerting a critical role in neuronal development and brain function. Rare genetic variants in the GRIN genes encoding NMDAR subunits segregated with neurological disorders. Here, we summarize the clinical presentations for 18 patients harboring 12 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M2 re-entrant loop, a region that lines the pore and is intolerant to missense variation. These de novo variants were identified in children with a set of neurological and neuropsychiatric conditions. Evaluation of the receptor cell surface expression, pharmacological properties, and biophysical characteristics show that these variants can have modest changes in agonist potency, proton inhibition, and surface expression. However, voltage-dependent magnesium inhibition is significantly reduced in all variants. The NMDARs hosting a single copy of a mutant subunit showed a dominant reduction in magnesium inhibition for some variants. These variant NMDARs also show reduced calcium permeability and single-channel conductance, as well as altered open probability. The data suggest that M2 missense variants increase NMDAR charge transfer in addition to varied and complex influences on NMDAR functional properties, which may underlie the patients' phenotypes.

6.
Brain ; 142(9): 2617-2630, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327001

RESUMO

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.

7.
Epilepsia ; 60(6): e63-e66, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31077350

RESUMO

Severe early onset epilepsies are often caused by de novo pathogenic variants. Few studies have reported the frequency of somatic mosaicism in parents of children with severe epileptic encephalopathies. Here we aim to investigate the frequency of mosaicism in the parents of children with epilepsy caused by alleged de novo variants. We tested parental genomic DNA derived from different tissues for 75 cases using targeted next-generation sequencing. Five parents (6.6%) showed mosaicism at minor allele frequencies of 0.8%-29% for the pathogenic variant detected in their offspring. Parental mosaicism was observed in the following genes: SCN1A, SCN2A, SCN8A, and STXBP1. One of the identified parents had epilepsy himself. Our results show that de novo events can occur already in parental tissue and in some cases can be detected in peripheral blood. Consequently, parents affected by low-grade mosaicism are faced with an increased recurrence risk for transmitting the pathogenic variant, compared to the overall recurrence risk for a second affected child estimated at approximately 1%. However, testing for parental somatic mosaicism will help identifying those parents who truly are at higher risk and will significantly improve genetic counseling in the respective families.

8.
Genet Med ; 21(11): 2496-2503, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31056551

RESUMO

PURPOSE: We aimed to gain insight into frequencies of genetic variants in genes implicated in neurodevelopmental disorder with epilepsy (NDD+E) by investigating large cohorts of patients in a diagnostic setting. METHODS: We analyzed variants in NDD+E using epilepsy gene panel sequencing performed between 2013 and 2017 by two large diagnostic companies. We compared variant frequencies in 6994 panels with another 8588 recently published panels as well as exome-wide de novo variants in 1942 individuals with NDD+E and 10,937 controls. RESULTS: Genes with highest frequencies of ultrarare variants in NDD+E comprised SCN1A, KCNQ2, SCN2A, CDKL5, SCN8A, and STXBP1, concordant with the two other epilepsy cohorts we investigated. In only 46% of the analyzed 262 dominant and X-linked panel genes ultrarare variants in patients were reported. Among genes with contradictory evidence of association with epilepsy, CACNB4, CLCN2, EFHC1, GABRD, MAGI2, and SRPX2 showed equal frequencies in cases and controls. CONCLUSION: We show that improvement of panel design increased diagnostic yield over time, but panels still display genes with low or no diagnostic yield. With our data, we hope to improve current diagnostic NDD+E panel design and provide a resource of ultrarare variants in individuals with NDD+E to the community.

9.
Epilepsia ; 60(4): 689-706, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30866059

RESUMO

OBJECTIVE: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available. METHODS: We assembled a cohort of 1255 patients with preexisting array comparative genomic hybridization or single nucleotide polymorphism array based CNV data. All patients had "epilepsy plus," defined as epilepsy with comorbid features, including intellectual disability, psychiatric symptoms, and other neurological and nonneurological features. CNV classification was conducted using a systematic filtering workflow adapted to epilepsy. RESULTS: Of 1097 patients remaining after genetic data quality control, 120 individuals (10.9%) carried at least one autosomal CNV classified as pathogenic; 19 individuals (1.7%) carried at least one autosomal CNV classified as possibly pathogenic. Eleven patients (1%) carried more than one (possibly) pathogenic CNV. We identified CNVs covering recently reported (HNRNPU) or emerging (RORB) epilepsy genes, and further delineated the phenotype associated with mutations of these genes. Additional novel epilepsy candidate genes emerge from our study. Comparing phenotypic features of pathogenic CNV carriers to those of noncarriers of pathogenic CNVs, we show that patients with nonneurological comorbidities, especially dysmorphism, were more likely to carry pathogenic CNVs (odds ratio = 4.09, confidence interval = 2.51-6.68; P = 2.34 × 10-9 ). Meta-analysis including data from published control groups showed that the presence or absence of epilepsy did not affect the detected frequency of CNVs. SIGNIFICANCE: The use of a specifically adapted workflow enabled identification of pathogenic autosomal CNVs in 10.9% of patients with epilepsy plus, which rose to 12.7% when we also considered possibly pathogenic CNVs. Our data indicate that epilepsy with comorbid features should be considered an indication for patients to be selected for a diagnostic algorithm including CNV detection. Collaborative large-scale CNV reanalysis leads to novel declaration of pathogenicity in unexplained cases and can promote discovery of promising candidate epilepsy genes.

10.
Expert Rev Mol Diagn ; 19(3): 217-228, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30661434

RESUMO

INTRODUCTION: Within the last decade, next-generation sequencing (NGS) has resulted in remarkable advances in the field of epilepsy genetics. NGS has become a routine part of the diagnostic workup in many countries. A workup that has led to higher diagnostic yields and insights into the underlying disease mechanisms. Areas covered: In this review, we report on the recent contributions of NGS testing to the diagnosis and the understanding of pathophysiological mechanisms, phenotypic variability, and genetic heterogeneity of different epilepsies including developmental and/or epileptic encephalopathies, focal and generalized epilepsies. Furthermore, we discuss how the increased knowledge of the genetic architecture of the epilepsies can be translated into more personalized treatment. Expert opinion/commentary: Targeted gene panels or whole exome sequencing can provide a genetic diagnosis for up to 30% of the patients with early-onset epilepsy. Despite current technical limitations, NGS-based technologies can become the new first-tier diagnostic tests in the epilepsies. As the pool of genetically diagnosed patients has increased, so has the demand for more accurate treatment. Approximately 25% of the epilepsy patients with de novo mutations have genetic diagnoses with potential targets for precision medicine approaches, thus illustrating the enormous utility of genetic testing for therapeutic decision-making.

11.
Am J Hum Genet ; 104(2): 203-212, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612693

RESUMO

Using exome sequencing, we have identified de novo variants in MAPK8IP3 in 13 unrelated individuals presenting with an overlapping phenotype of mild to severe intellectual disability. The de novo variants comprise six missense variants, three of which are recurrent, and three truncating variants. Brain anomalies such as perisylvian polymicrogyria, cerebral or cerebellar atrophy, and hypoplasia of the corpus callosum were consistent among individuals harboring recurrent de novo missense variants. MAPK8IP3 has been shown to be involved in the retrograde axonal-transport machinery, but many of its specific functions are yet to be elucidated. Using the CRISPR-Cas9 system to target six conserved amino acid positions in Caenorhabditis elegans, we found that two of the six investigated human alterations led to a significantly elevated density of axonal lysosomes, and five variants were associated with adverse locomotion. Reverse-engineering normalized the observed adverse effects back to wild-type levels. Combining genetic, phenotypic, and functional findings, as well as the significant enrichment of de novo variants in MAPK8IP3 within our total cohort of 27,232 individuals who underwent exome sequencing, we implicate de novo variants in MAPK8IP3 as a cause of a neurodevelopmental disorder with intellectual disability and variable brain anomalies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/anormalidades , Encéfalo/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Locomoção , Lisossomos/metabolismo , Masculino , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Sequenciamento Completo do Exoma , Adulto Jovem
12.
Brain ; 142(1): 80-92, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30544257

RESUMO

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Assuntos
Epilepsia/genética , Transtornos do Neurodesenvolvimento/genética , Receptores de N-Metil-D-Aspartato/genética , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Córtex Cerebelar/metabolismo , Criança , Pré-Escolar , Epilepsia/fisiopatologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Adulto Jovem
13.
JAMA Neurol ; 76(3): 342-350, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575854

RESUMO

Importance: The identification and understanding of the monogenic causes of neurodevelopmental disorders are of high importance for personalized treatment and genetic counseling. Objective: To identify and characterize novel genes for a specific neurodevelopmental disorder characterized by refractory seizures, respiratory failure, brain abnormalities, and death in the neonatal period; describe the outcome of glutaminase deficiency in humans; and understand the underlying pathological mechanisms. Design, Setting, and Participants: We performed exome sequencing of cases of neurodevelopmental disorders without a clear genetic diagnosis, followed by genetic and bioinformatic evaluation of candidate variants and genes. Establishing pathogenicity of the variants was achieved by measuring metabolites in dried blood spots by a hydrophilic interaction liquid chromatography method coupled with tandem mass spectrometry. The participants are 2 families with a total of 4 children who each had lethal, therapy-refractory early neonatal seizures with status epilepticus and suppression bursts, respiratory insufficiency, simplified gyral structures, diffuse volume loss of the brain, and cerebral edema. Data analysis occurred from October 2017 to June 2018. Main Outcomes and Measures: Early neonatal epileptic encephalopathy with glutaminase deficiency and lethal outcome. Results: A total of 4 infants from 2 unrelated families, each of whom died less than 40 days after birth, were included. We identified a homozygous frameshift variant p.(Asp232Glufs*2) in GLS in the first family, as well as compound heterozygous variants p.(Gln81*) and p.(Arg272Lys) in GLS in the second family. The GLS gene encodes glutaminase (Enzyme Commission 3.5.1.2), which plays a major role in the conversion of glutamine into glutamate, the main excitatory neurotransmitter of the central nervous system. All 3 variants probably lead to a loss of function and thus glutaminase deficiency. Indeed, glutamine was increased in affected children (available z scores, 3.2 and 11.7). We theorize that the potential reduction of glutamate and the excess of glutamine were a probable cause of the described physiological and structural abnormalities of the central nervous system. Conclusions and Relevance: We identified a novel autosomal recessive neurometabolic disorder of loss of function of glutaminase that leads to lethal early neonatal encephalopathy. This inborn error of metabolism underlines the importance of GLS for appropriate glutamine homeostasis and respiratory regulation, signal transduction, and survival.

14.
Ann Neurol ; 84(5): 788-795, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30269351

RESUMO

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.

16.
Hum Mutat ; 39(12): 1942-1956, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30144217

RESUMO

Variants in the SCN2A gene cause a broad spectrum of epilepsy syndromes of variable severity including benign neonatal-infantile epilepsy (BFNIE), developmental and epileptic encephalopathies (DEE), and other neuropsychiatric disorders. Here, we studied three newly identified variants, which caused distinct phenotypes observed in nine affected individuals of three families, including BFNIE, and DEE with intractable neonatal seizures. Whole cell patch-clamp recordings of transfected tsA201 cells disclosed an increased current density and an increased subthreshold sodium inward current upon an action potential stimulus (p.(Lys908Glu)), a hyperpolarizing shift of the activation curve (p.(Val208Glu) and p.(Thr773Ile)), and an increased persistent current (p.(Thr773Ile)). To evaluate genotype-phenotype correlations, we next developed scoring systems for both the extent of the electrophysiological dysfunction and the severity of the clinical phenotype and applied those to 21 previously and newly functionally characterized SCN2A variants. All inherited variants were associated with a mild clinical phenotype and a lower electrophysiological score compared to those occurring de novo and causing severe phenotypes. Our results thus reveal a nice correlation between the extent of channel dysfunction and the clinical severity.

17.
PLoS One ; 13(8): e0201041, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30091983

RESUMO

Although intellectual disability is one of the major indications for genetic counselling, there are no homogenous diagnostic algorithms for molecular testing. While whole exome sequencing is increasingly applied, we questioned whether analyzing a partial exome, enriched for genes associated with Mendelian disorders, might be a valid alternative approach that yields similar detection rates but requires less sequencing capacities. Within this context 106 patients with different intellectual disability forms were analyzed for mutations in 4.813 genes after pre-exclusion of copy number variations by array-CGH. Subsequent variant interpretation was performed in accordance with the ACMG guidelines. By this, a molecular diagnosis was established in 34% of cases and candidate mutations were identified in additional 24% of patients. Detection rates of causative mutations were above 30%, regardless of further symptoms, except for patients with seizures (23%). We did not detect an advantage from partial exome sequencing for patients with severe intellectual disability (36%) as compared to those with mild intellectual disability (44%). Specific clinical diagnoses pre-existed for 20 patients. Of these, 5 could be confirmed and an additional 6 cases could be solved, but showed mutations in other genes than initially suspected. In conclusion partial exome sequencing solved >30% of intellectual disability cases, which is similar to published rates obtained by whole exome sequencing. The approach therefore proved to be a valid alternative to whole exome sequencing for molecular diagnostics in this cohort. The method proved equally suitable for both syndromic and non-syndromic intellectual disability forms of all severity grades.

18.
Ann Neurol ; 84(2): 200-207, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30014507

RESUMO

OBJECTIVE: Developmental delay (DD) with favorable intellectual outcome and mild intellectual disability (ID) are mostly considered to be of complex genetic and environmental origin, but, in fact, often remain unclear. We aimed at proving our assumption that also mild cases of DD and ID may be of monogenic etiology. METHODS: We clinically evaluated 8 individuals and performed exome sequencing or array copy number analysis and identified variants in CUX1 as the likely cause. In addition, we included a case from the public database, DECIPHER. RESULTS: All 9 individuals harbored heterozygous null-allele variants in CUX1, encoding the Cut-homeobox 1 transcription factor that is involved in regulation of dendritogenesis and cortical synapse formation in layer II to IV cortical neurons. Six variants arose de novo, while in one family the variant segregated with ID. Of the 9 included individuals, 2 were diagnosed with moderate ID, 3 with mild ID, and 3 showed a normal age-related intelligence at ages 4, 6, and 8 years after a previous history of significant DD. INTERPRETATION: Our results suggest that null-allele variants, and thus haploinsufficiency of CUX1, cause an isolated phenotype of DD or ID with possible catch-up development. This illustrates that such a developmental course is not necessarily genetic complex, but may also be attributed to a monogenic cause. Ann Neurol 2018;84:200-207.

19.
Nat Genet ; 50(7): 1048-1053, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29942082

RESUMO

Epilepsy is a frequent feature of neurodevelopmental disorders (NDDs), but little is known about genetic differences between NDDs with and without epilepsy. We analyzed de novo variants (DNVs) in 6,753 parent-offspring trios ascertained to have different NDDs. In the subset of 1,942 individuals with NDDs with epilepsy, we identified 33 genes with a significant excess of DNVs, of which SNAP25 and GABRB2 had previously only limited evidence of disease association. Joint analysis of all individuals with NDDs also implicated CACNA1E as a novel disease-associated gene. Comparing NDDs with and without epilepsy, we found missense DNVs, DNVs in specific genes, age of recruitment, and severity of intellectual disability to be associated with epilepsy. We further demonstrate the extent to which our results affect current genetic testing as well as treatment, emphasizing the benefit of accurate genetic diagnosis in NDDs with epilepsy.

20.
Ann Neurol ; 83(6): 1198-1204, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29740868

RESUMO

Variants in several potassium channel genes have been found in developmental and epileptic encephalopathies (DEE). We report on 2 females with de novo variants in KCNT2 with West syndrome followed by Lennox-Gastaut syndrome or with DEE with migrating focal seizures. After in vitro analysis suggested quinidine-responsive gain-of-function effects, we treated 1 of the girls with quinidine add-on therapy and achieved marked clinical improvements. This suggests that the new spectrum of KCNT2-related disorders do not only share similar phenotypic and in vitro functional and pharmacological features with previously known KCNT1-related disorders, but also represents a further example for possible precision medicine approaches. Ann Neurol 2018;83:1198-1204.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA