Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
J Am Soc Nephrol ; 29(7): 1992-1999, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29728422


Background Most patients on hemodialysis are treated thrice weekly even if they have residual kidney function, in part because uncertainty remains as to how residual function should be valued and incorporated into the dialysis prescription. Recent guidelines, however, have increased the weight assigned to residual function and thus reduced the treatment time required when it is present. Increasing the weight assigned to residual function may be justified by knowledge that the native kidney performs functions not replicated by dialysis, including solute removal by secretion. This study tested whether plasma concentrations of secreted solutes are as well controlled in patients with residual function on twice weekly hemodialysis as in anuric patients on thrice weekly hemodialysis.Methods We measured the plasma concentration and residual clearance, dialytic clearance, and removal rates for urea and the secreted solutes hippurate, phenylacetylglutamine, indoxyl sulfate, and p-cresol sulfate in nine patients on twice weekly hemodialysis and nine patients on thrice weekly hemodialysis.Results Compared with anuric patients on thrice weekly dialysis with the same standard Kt/Vurea, patients on twice weekly hemodialysis had lower hippurate and phenylacetylglutamine concentrations and similar indoxyl sulfate and p-cresol sulfate concentrations. Mathematical modeling revealed that residual secretory function accounted for the observed pattern of solute concentrations.Conclusions Plasma concentrations of secreted solutes can be well controlled by twice weekly hemodialysis in patients with residual kidney function. This result supports further study of residual kidney function value and the inclusion of this function in dialysis adequacy measures.

Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/terapia , Diálise Renal/métodos , Idoso , Idoso de 80 Anos ou mais , Cresóis/sangue , Feminino , Glutamina/análogos & derivados , Glutamina/sangue , Hipuratos/sangue , Humanos , Indicã/sangue , Falência Renal Crônica/sangue , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica , Ésteres do Ácido Sulfúrico/sangue , Ureia/sangue
Toxins (Basel) ; 8(12)2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27916890


Indoxyl sulfate is an extensively studied uremic solute. It is a small molecule that is more than 90% bound to plasma proteins. Indoxyl sulfate is derived from the breakdown of tryptophan by colon microbes. The kidneys achieve high clearances of indoxyl sulfate by tubular secretion, a function not replicated by hemodialysis. Clearance by hemodialysis is limited by protein binding since only the free, unbound solute can diffuse across the membrane. Since the dialytic clearance is much lower than the kidney clearance, indoxyl sulfate accumulates to relatively high plasma levels in hemodialysis patients. Indoxyl sulfate has been most frequently implicated as a contributor to renal disease progression and vascular disease. Studies have suggested that indoxyl sulfate also has adverse effects on bones and the central nervous system. The majority of studies have assessed toxicity in cultured cells and animal models. The toxicity in humans has not yet been proven, as most data have been from association studies. Such toxicity data, albeit inconclusive, have prompted efforts to lower the plasma levels of indoxyl sulfate through dialytic and non-dialytic means. The largest randomized trial showed no benefit in renal disease progression with AST-120. No trials have yet tested cardiovascular or mortality benefit. Without such trials, the toxicity of indoxyl sulfate cannot be firmly established.

Indicã/toxicidade , Animais , Doenças Ósseas/metabolismo , Humanos , Nefropatias/metabolismo , Doenças Vasculares/metabolismo