Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5742, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848334

RESUMO

Small animals support a wide range of pathological phenotypes and genotypes as versatile, affordable models for pathogenesis of cardiovascular diseases and for exploration of strategies in electrotherapy, gene therapy, and optogenetics. Pacing tools in such contexts are currently limited to tethered embodiments that constrain animal behaviors and experimental designs. Here, we introduce a highly miniaturized wireless energy-harvesting and digital communication electronics for thin, miniaturized pacing platforms weighing 110 mg with capabilities for subdermal implantation and tolerance to over 200,000 multiaxial cycles of strain without degradation in electrical or optical performance. Multimodal and multisite pacing in ex vivo and in vivo studies over many days demonstrate chronic stability and excellent biocompatibility. Optogenetic stimulation of cardiac cycles with in-animal control and induction of heart failure through chronic pacing serve as examples of modes of operation relevant to fundamental and applied cardiovascular research and biomedical technology.


Assuntos
Engenharia Biomédica/métodos , Dispositivos de Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca/etiologia , Miniaturização , Optogenética/métodos , Animais , Modelos Animais de Doenças , Fontes de Energia Elétrica , Feminino , Humanos , Preparação de Coração Isolado , Masculino , Camundongos , Camundongos Transgênicos , Tecnologia sem Fio
2.
Proc Natl Acad Sci U S A ; 116(43): 21427-21437, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31601737

RESUMO

Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.


Assuntos
Optogenética/métodos , Farmacologia/métodos , Animais , Encéfalo/metabolismo , Química Encefálica , Channelrhodopsins/metabolismo , Estimulação Elétrica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética/instrumentação , Farmacologia/instrumentação , Próteses e Implantes , Tecnologia sem Fio/instrumentação
3.
Sci Adv ; 5(1): eaav3294, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30746477

RESUMO

Wearable sweat sensors rely either on electronics for electrochemical detection or on colorimetry for visual readout. Non-ideal form factors represent disadvantages of the former, while semiquantitative operation and narrow scope of measurable biomarkers characterize the latter. Here, we introduce a battery-free, wireless electronic sensing platform inspired by biofuel cells that integrates chronometric microfluidic platforms with embedded colorimetric assays. The resulting sensors combine advantages of electronic and microfluidic functionality in a platform that is significantly lighter, cheaper, and smaller than alternatives. A demonstration device simultaneously monitors sweat rate/loss, pH, lactate, glucose, and chloride. Systematic studies of the electronics, microfluidics, and integration schemes establish the key design considerations and performance attributes. Two-day human trials that compare concentrations of glucose and lactate in sweat and blood suggest a potential basis for noninvasive, semi-quantitative tracking of physiological status.


Assuntos
Técnicas Biossensoriais/instrumentação , Colorimetria/métodos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Pele/metabolismo , Suor/química , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Bioelétrica , Cloretos/análise , Glucose/análise , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/análise , Masculino
4.
Small ; 14(47): e1803192, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30369049

RESUMO

Precise, quantitative measurements of the thermal properties of human skin can yield insights into thermoregulatory function, hydration, blood perfusion, wound healing, and other parameters of clinical interest. The need for wired power supply systems and data communication hardware limits, however, practical applicability of existing devices designed for measurements of this type. Here, a set of advanced materials, mechanics designs, integration schemes, and wireless circuits is reported as the basis for wireless, battery-free sensors that softly interface to the skin to enable precise measurements of its temperature and thermal transport properties. Calibration processes connect these parameters to the hydration state of the skin, the dynamics of near-surface flow through blood vessels and implanted catheters, and to recovery processes following trauma. Systematic engineering studies yield quantitative metrics in precision and reliability in real-world conditions. Evaluations on five human subjects demonstrate the capabilities in measurements of skin hydration and injury, including examples of continuous wear and monitoring over a period of 1 week, without disrupting natural daily activities.


Assuntos
Eletrônica/métodos , Pele/metabolismo , Tecnologia sem Fio , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...