Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5118, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433829

RESUMO

TRP channel-associated factor 1/2 (TCAF1/TCAF2) proteins antagonistically regulate the cold-sensor protein TRPM8 in multiple human tissues. Understanding their significance has been complicated given the locus spans a gap-ridden region with complex segmental duplications in GRCh38. Using long-read sequencing, we sequence-resolve the locus, annotate full-length TCAF models in primate genomes, and show substantial human-specific TCAF copy number variation. We identify two human super haplogroups, H4 and H5, and establish that TCAF duplications originated ~1.7 million years ago but diversified only in Homo sapiens by recurrent structural mutations. Conversely, in all archaic-hominin samples the fixation for a specific H4 haplotype without duplication is likely due to positive selection. Here, our results of TCAF copy number expansion, selection signals in hominins, and differential TCAF2 expression between haplogroups and high TCAF2 and TRPM8 expression in liver and prostate in modern-day humans imply TCAF diversification among hominins potentially in response to cold or dietary adaptations.


Assuntos
Duplicação Gênica , Hominidae/genética , Proteínas de Membrana/genética , Seleção Genética , Animais , Variações do Número de Cópias de DNA , Evolução Molecular , Genoma Humano , Haplótipos , Humanos , Homem de Neandertal , Filogenia
2.
Am J Hum Genet ; 108(8): 1436-1449, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216551

RESUMO

Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted. We performed targeted long-read sequencing (T-LRS) using adaptive sampling on the Oxford Nanopore platform on 40 individuals, 10 of whom lacked a complete molecular diagnosis. We computationally targeted up to 151 Mbp of sequence per individual and searched for pathogenic substitutions, structural variants, and methylation differences using a single data source. We detected all genomic aberrations-including single-nucleotide variants, copy number changes, repeat expansions, and methylation differences-identified by prior clinical testing. In 8/8 individuals with complex structural rearrangements, T-LRS enabled more precise resolution of the mutation, leading to changes in clinical management in one case. In ten individuals with suspected Mendelian conditions lacking a precise genetic diagnosis, T-LRS identified pathogenic or likely pathogenic variants in six and variants of uncertain significance in two others. T-LRS accurately identifies pathogenic structural variants, resolves complex rearrangements, and identifies Mendelian variants not detected by other technologies. T-LRS represents an efficient and cost-effective strategy to evaluate high-priority genes and regions or complex clinical testing results.


Assuntos
Aberrações Cromossômicas , Análise Citogenética/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Genoma Humano , Mutação , Variações do Número de Cópias de DNA , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem , Masculino , Análise de Sequência de DNA
3.
Nature ; 594(7861): 77-81, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33953399

RESUMO

The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation1,2. Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes1,3-5 and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome.


Assuntos
Evolução Molecular , Genoma/genética , Genômica , Pan paniscus/genética , Filogenia , Animais , Fator de Iniciação 4A em Eucariotos/genética , Feminino , Genes , Gorilla gorilla/genética , Anotação de Sequência Molecular/normas , Pan troglodytes/genética , Pongo/genética , Duplicações Segmentares Genômicas , Análise de Sequência de DNA
4.
Science ; 372(6537)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33632895

RESUMO

Long-read and strand-specific sequencing technologies together facilitate the de novo assembly of high-quality haplotype-resolved human genomes without parent-child trio data. We present 64 assembled haplotypes from 32 diverse human genomes. These highly contiguous haplotype assemblies (average minimum contig length needed to cover 50% of the genome: 26 million base pairs) integrate all forms of genetic variation, even across complex loci. We identified 107,590 structural variants (SVs), of which 68% were not discovered with short-read sequencing, and 278 SV hotspots (spanning megabases of gene-rich sequence). We characterized 130 of the most active mobile element source elements and found that 63% of all SVs arise through homology-mediated mechanisms. This resource enables reliable graph-based genotyping from short reads of up to 50,340 SVs, resulting in the identification of 1526 expression quantitative trait loci as well as SV candidates for adaptive selection within the human population.


Assuntos
Variação Genética , Genoma Humano , Haplótipos , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação INDEL , Sequências Repetitivas Dispersas , Masculino , Grupos Populacionais/genética , Locos de Características Quantitativas , Retroelementos , Análise de Sequência de DNA , Inversão de Sequência , Sequenciamento Completo do Genoma
5.
Science ; 370(6523)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33335035

RESUMO

The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman primate (NHP) in biomedical research. We present an updated reference genome assembly (Mmul_10, contig N50 = 46 Mbp) that increases the sequence contiguity 120-fold and annotate it using 6.5 million full-length transcripts, thus improving our understanding of gene content, isoform diversity, and repeat organization. With the improved assembly of segmental duplications, we discovered new lineage-specific genes and expanded gene families that are potentially informative in studies of evolution and disease susceptibility. Whole-genome sequencing (WGS) data from 853 rhesus macaques identified 85.7 million single-nucleotide variants (SNVs) and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay, providing a framework for developing noninvasive NHP models of human disease.


Assuntos
Predisposição Genética para Doença , Genoma , Macaca mulatta/genética , Polimorfismo de Nucleotídeo Único , Animais , Variação Genética , Humanos , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
6.
Science ; 366(6463)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624180

RESUMO

Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.


Assuntos
Introgressão Genética , Animais , Duplicação Cromossômica , Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 8/genética , Variações do Número de Cópias de DNA , Evolução Molecular , Genoma Humano , Haplótipos , Hominidae/genética , Humanos , Melanesia , Modelos Genéticos , Homem de Neandertal/genética , Polimorfismo Genético , Seleção Genética , Sequenciamento Completo do Genoma
7.
Genes Chromosomes Cancer ; 55(3): 278-87, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26650888

RESUMO

Investigation of the genetic lesions underlying classical Hodgkin lymphoma (CHL) has been challenging due to the rarity of Hodgkin and Reed-Sternberg (HRS) cells, the pathognomonic neoplastic cells of CHL. In an effort to catalog more comprehensively recurrent copy number alterations occurring during oncogenesis, we investigated somatic alterations involved in CHL using whole-genome sequencing-mediated copy number analysis of purified HRS cells. We performed low-coverage sequencing of small numbers of intact HRS cells and paired non-neoplastic B lymphocytes isolated by flow cytometric cell sorting from 19 primary cases, as well as two commonly used HRS-derived cell lines (KM-H2 and L1236). We found that HRS cells contain strikingly fewer copy number abnormalities than CHL cell lines. A subset of cases displayed nonintegral chromosomal copy number states, suggesting internal heterogeneity within the HRS cell population. Recurrent somatic copy number alterations involving known factors in CHL pathogenesis were identified (REL, the PD-1 pathway, and TNFAIP3). In eight cases (42%) we observed recurrent copy number loss of chr1:2,352,236-4,574,271, a region containing the candidate tumor suppressor TNFRSF14. Using flow cytometry, we demonstrated reduced TNFRSF14 expression in HRS cells from 5 of 22 additional cases (23%) and in two of three CHL cell lines. These studies suggest that TNFRSF14 dysregulation may contribute to the pathobiology of CHL in a subset of cases.


Assuntos
Doença de Hodgkin/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Doença de Hodgkin/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Membro 14 de Receptores do Fator de Necrose Tumoral/biossíntese , Membro 14 de Receptores do Fator de Necrose Tumoral/deficiência , Células de Reed-Sternberg
8.
Genome Med ; 7(1): 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26019723

RESUMO

BACKGROUND: Preimplantation genetic diagnosis (PGD) enables profiling of embryos for genetic disorders prior to implantation. The majority of PGD testing is restricted in the scope of variants assayed or by the availability of extended family members. While recent advances in single cell sequencing show promise, they remain limited by bias in DNA amplification and the rapid turnaround time (<36 h) required for fresh embryo transfer. Here, we describe and validate a method for inferring the inherited whole genome sequence of an embryo for preimplantation genetic diagnosis (PGD). METHODS: We combine haplotype-resolved, parental genome sequencing with rapid embryo genotyping to predict the whole genome sequence of a day-5 human embryo in a couple at risk of transmitting alpha-thalassemia. RESULTS: Inheritance was predicted at approximately 3 million paternally and/or maternally heterozygous sites with greater than 99% accuracy. Furthermore, we successfully phase and predict the transmission of an HBA1/HBA2 deletion from each parent. CONCLUSIONS: Our results suggest that preimplantation whole genome prediction may facilitate the comprehensive diagnosis of diseases with a known genetic basis in embryos.

9.
Am J Hum Genet ; 93(4): 711-20, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24055112

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.


Assuntos
Antígenos de Superfície/genética , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Dineínas/genética , Proteínas de Ligação ao GTP/genética , Síndrome de Kartagener/genética , Mutação/genética , Adolescente , Adulto , Animais , Axonema/genética , Criança , Pré-Escolar , Citoplasma/genética , Células Epiteliais/metabolismo , Exoma , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Adulto Jovem , Peixe-Zebra
10.
Nature ; 500(7461): 207-11, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925245

RESUMO

The HeLa cell line was established in 1951 from cervical cancer cells taken from a patient, Henrietta Lacks. This was the first successful attempt to immortalize human-derived cells in vitro. The robust growth and unrestricted distribution of HeLa cells resulted in its broad adoption--both intentionally and through widespread cross-contamination--and for the past 60 years it has served a role analogous to that of a model organism. The cumulative impact of the HeLa cell line on research is demonstrated by its occurrence in more than 74,000 PubMed abstracts (approximately 0.3%). The genomic architecture of HeLa remains largely unexplored beyond its karyotype, partly because like many cancers, its extensive aneuploidy renders such analyses challenging. We carried out haplotype-resolved whole-genome sequencing of the HeLa CCL-2 strain, examined point- and indel-mutation variations, mapped copy-number variations and loss of heterozygosity regions, and phased variants across full chromosome arms. We also investigated variation and copy-number profiles for HeLa S3 and eight additional strains. We find that HeLa is relatively stable in terms of point variation, with few new mutations accumulating after early passaging. Haplotype resolution facilitated reconstruction of an amplified, highly rearranged region of chromosome 8q24.21 at which integration of the human papilloma virus type 18 (HPV-18) genome occurred and that is likely to be the event that initiated tumorigenesis. We combined these maps with RNA-seq and ENCODE Project data sets to phase the HeLa epigenome. This revealed strong, haplotype-specific activation of the proto-oncogene MYC by the integrated HPV-18 genome approximately 500 kilobases upstream, and enabled global analyses of the relationship between gene dosage and expression. These data provide an extensively phased, high-quality reference genome for past and future experiments relying on HeLa, and demonstrate the value of haplotype resolution for characterizing cancer genomes and epigenomes.


Assuntos
Epigenômica , Genoma Humano/genética , Aneuploidia , Variações do Número de Cópias de DNA , Feminino , Genes myc/genética , Haplótipos , Células HeLa , Papillomavirus Humano 18/genética , Papillomavirus Humano 18/fisiologia , Humanos , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Ativação Transcricional/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia
11.
Am J Hum Genet ; 92(1): 99-106, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23261302

RESUMO

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only ~60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.


Assuntos
Síndrome de Kartagener/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Adulto , Pré-Escolar , Exoma , Feminino , Genes Recessivos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Isoformas de Proteínas , Análise de Sequência de DNA
13.
Sci Transl Med ; 4(137): 137ra76, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22674554

RESUMO

Analysis of cell-free fetal DNA in maternal plasma holds promise for the development of noninvasive prenatal genetic diagnostics. Previous studies have been restricted to detection of fetal trisomies, to specific paternally inherited mutations, or to genotyping common polymorphisms using material obtained invasively, for example, through chorionic villus sampling. Here, we combine genome sequencing of two parents, genome-wide maternal haplotyping, and deep sequencing of maternal plasma DNA to noninvasively determine the genome sequence of a human fetus at 18.5 weeks of gestation. Inheritance was predicted at 2.8 × 10(6) parental heterozygous sites with 98.1% accuracy. Furthermore, 39 of 44 de novo point mutations in the fetal genome were detected, albeit with limited specificity. Subsampling these data and analyzing a second family trio by the same approach indicate that parental haplotype blocks of ~300 kilo-base pairs combined with shallow sequencing of maternal plasma DNA is sufficient to substantially determine the inherited complement of a fetal genome. However, ultradeep sequencing of maternal plasma DNA is necessary for the practical detection of fetal de novo mutations genome-wide. Although technical and analytical challenges remain, we anticipate that noninvasive analysis of inherited variation and de novo mutations in fetal genomes will facilitate prenatal diagnosis of both recessive and dominant Mendelian disorders.


Assuntos
DNA/sangue , Feto/metabolismo , Diagnóstico Pré-Natal/métodos , DNA/genética , Feminino , Idade Gestacional , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...