Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Food Chem ; 369: 130959, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469836

RESUMO

The huge economic loss of citrus fruit after harvest called for safe and efficient preservatives, as chemically synthesized agents threatened the environment and human health. Herein a biocontrol fungus Chaetomium globosum QY-1 near the orchard in riparian area was identified to have antimicrobial, antioxidant and tyrosinase inhibition activity, which meets the requirements of an ideal preservative. Metabolite profiling based on bioassay-guided fractionation was carried out, and eight polyketones were determined by MS and NMR. The most abundant CheA exhibited strong inhibition to Penicillium digitatum, the main pathogen caused citrus fruit rot. Among these metabolites, Epicoccone and Epicoccolide B showed higher antioxidant activity, while Epicoccone and CheA had higher tyrosinase inhibitory activity. All the activities were close to or even better than the positive control (Vc; glutathione; Vc and arbutin; Bellkute), implying that the metabolites of C. globosum had comprehensive effects as natural preservatives.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34628611

RESUMO

A novel ferrate(VI)/titanium dioxide/ultraviolet [Fe(VI)/TiO2/UV] system was successfully established for the photocatalytic oxidation of dimethyl phthalate (DMP). This system demonstrated a higher removal efficiency of DMP (95.2%) than the conventional TiO2/UV and Fe(VI) alone systems (51.8% and 23.5%, respectively) and produced obvious synergistic effects. Response surface methodology (RSM), based on a three level, three independent variables design, was conducted through Design Expert 8.0.6 program, and a second-order polynomial model (R2 = 0.998) was developed to quantitatively describe the photocatalysis of TiO2 combined with Fe(VI) oxidation under ultraviolet irradiation. The fresh TiO2 and photochemical reacted Fe(VI)/TiO2 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and element dispersive spectrum (EDS), which indicated that Fe(VI) was imprinted into the TiO2, and the surface adsorbed Fe-O-(organic) materials inhibited DMP degradation. This photocatalytic oxidant showed high activity and stability after nine cycles without loss of its effectiveness (counting from the second cycle). The intermediates/products of DMP were analyzed by gas chromatography-mass spectrometry. The proposed pathway for DMP degradation involved one electron transfer of hydroxyl radical and breaking of the ester bond and benzene ring. The mineralization efficiencies of DMP in actual industrial wastewater and simulated water were 87.1% and 95.2%, respectively, suggesting practical field applications. A ecotoxicity test (17.3% inhibition on bioluminescence) in treating actual industrial wastewater containing DMP implied that the proposed Fe(VI)/TiO2/UV had a potential for industrial water treatment.

3.
Front Cell Neurosci ; 15: 751867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646124

RESUMO

Neomycin is a common ototoxic aminoglycoside antibiotic that causes sensory hearing disorders worldwide, and monosialotetrahexosylganglioside (GM1) is reported to have antioxidant effects that protect various cells. However, little is known about the effect of GM1 on neomycin-induced hair cell (HC) ototoxic damage and related mechanism. In this study, cochlear HC-like HEI-OC-1 cells along with whole-organ explant cultures were used to establish an in vitro neomycin-induced HC damage model, and then the apoptosis rate, the balance of oxidative and antioxidant gene expression, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were measured. GM1 could maintain the balance of oxidative and antioxidant gene expression, inhibit the accumulation of ROS and proapoptotic gene expression, promoted antioxidant gene expression, and reduce apoptosis after neomycin exposure in HEI-OC-1 cells and cultured cochlear HCs. These results suggested that GM1 could reduce ROS aggregation, maintain mitochondrial function, and improve HC viability in the presence of neomycin, possibly through mitochondrial antioxidation. Hence, GM1 may have potential clinical value in protecting against aminoglycoside-induced HC injury.

4.
Sci Total Environ ; : 151074, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34678370

RESUMO

In shale gas mining areas, indigenous microorganisms degrade organic pollutants such as petroleum hydrocarbons into carbon dioxide (CO2) and water (H2O) through aerobic metabolism. A large quantity of CO2 emissions will exacerbate the "Greenhouse effect". Based on the clean sieved soil and oil-based drilling fluid in the shale gas mining area, this experiment set three concentration gradients (3523 ±â€¯159 mg/kg, 8715 ±â€¯820 mg/kg and 22,031 ±â€¯1533 mg/kg) to treat the soil, and each group was disposed for the same amount of time (63 days). By analyzing the dynamic changes of microbial diversity and the abundance of key functional genes for carbon fixation, the impact of petroleum hydrocarbons on carbon fixation potential was discovered, and the natural attenuation law of petroleum hydrocarbons in contaminated soil was explored. It provided the scientific research basis of ecology for the carbon cycle, carbon allocation, and carbon fixation in microbial remediation of petroleum hydrocarbon contaminated soil. The results obtained indicated the following: i) The removal rate of petroleum hydrocarbons under high-concentration pollution (45.33 ±â€¯3.90%) was significantly lower than low and medium-concentration pollution. The TPH concentration removal rate of each group was the largest in the early stage of culture (1-5d), and there was no significant correlation between the TPH content and the community composition (R2 = 0.0736, P > 0.05). ii) Composition and function of Carbon Fixation associated microbiota were assessed by 16S rRNA sequencing and PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states) analysis. The main carbon fixation pathway in this study is the reductive citric acid cycle, because there was no shortage of enzymes that can affect subsequent reactions.

5.
J Food Biochem ; : e13956, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34590315

RESUMO

The effects of phloridzin (PHL), main component of Malus hupehensis (MH) tea leaves, on blood glucose (BG) and glucose-6-phosphatase (G-6-Pase) were investigated to provide a basis for finding a scheme of stabilizing BG. Glucose uptake of insulin resistant HepG2 cells was measured by glucose oxidase method. Glucose tolerance, fasting BG (FBG) and postprandial BG (PBG) were determined by BG test strips. The expression of G-6-Pase was detected by Western blot. The results showed that glucose uptake was enhanced and the expression of G-6-Pase was inhibited by PHL in insulin resistant HepG2 cells. Glucose tolerance was enhanced, FBG level was increased and PBG level was decreased by PHL in mice. The expression of G-6-Pase in the liver was enhanced under fasting state, and was inhibited by the low and medium dose under postprandial state. It indicated that PHL has a positive effect on stabilizing BG in mice, which is related to bidirectional regulation of G-6-Pase activity. PRACTICAL APPLICATIONS: Malus hupehensis, edible and medicinal plant, which has been proved by long-term application and experiments that it has a good effect on stabilizing blood glucose, preventing diabetes and adjuvant treatment. Its effect is closely related to its main component PHL. Thus, MH can be used as a dietary regulating drink for daily life to maintain blood glucose. Its main ingredient is PHL, which can be developed as a candidate drug for diabetes treatment.

6.
Eur J Pharmacol ; : 174524, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34582844

RESUMO

Growing incidence of postoperative cognitive dysfunction (POCD) in the elderly populations after major surgery challenges us to provide stable and effective treatments. Mitochondria dysfunction is essential in the pathogenesis of aging and neurodegenerative diseases. It is hypothesized that varenicline improves cognitive impairment through restoring mitophagy and tau phosphorylation. Wild type C57BL/6 mice (male, 18-month-old) were subjected to laparotomy with or without chronic varenicline administration. Postoperative cognition and anxiety were determined by Morris water maze and elevated plus maze tests. Meanwhile, oxidative stress, mitochondria function, mitophagy and tau phosphorylation, as well as the correlation of PKR and STAT3 were characterized. In aged mice following laparotomy, persistent cognitive dysfunction in spatial learning and memory were indicated by longer escape latency and less crossing frequency in the target quadrant. Laparotomy also induced anxiety responses deficits. After postoperative 14 days, significant ROS accumulation and smaller mitochondria with impaired function were presented in the hippocampus. Simultaneously, there were abundant of neuronal apoptosis and translocation of tau phosphorylation in the mitochondria. Enhanced mitophagy and down regulated ChAT activity were distributed in the mice subjected to laparotomy. PKR signaling was activated and required for subcellular activation of STAT3 in the brain. After chronic varenicline administration (1 mg/kg/day), cognitive dysfunction, hippocampal oxidative stress, as well as fragile mitophagy were improved. Our results highlight that laparotomy caused cognitive impairment with persistent oxidative stress, mitochondria dysfunction and autophagy dysregulation. PKR/STAT3 maybe the potential mechanism, and perioperative varenicline treatment could be an efficient therapeutic strategy for POCD.

7.
Chem Commun (Camb) ; 57(75): 9622-9625, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34546273

RESUMO

Peroxynitrite is an important biomarker for assessing drug-induced liver injury (DILI), which is critical for the development and use of drugs. Herein, we report the development of peroxynitrite-responsive self-assembled 19F MRI nanoprobes, which enable the sensitive imaging of peroxynitrite in L02 cells subjected to oxidative stress and living mice with DILI.

8.
BMC Plant Biol ; 21(1): 421, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521343

RESUMO

BACKGROUND: Although plastomes are highly conserved with respect to gene content and order in most photosynthetic angiosperms, extensive genomic rearrangements have been reported in Fabaceae, particularly within the inverted repeat lacking clade (IRLC) of Papilionoideae. Two hypotheses, i.e., the absence of the IR and the increased repeat content, have been proposed to affect the stability of plastomes. However, this is still unclear for the IRLC species. Here, we aimed to investigate the relationships between repeat content and the degree of genomic rearrangements in plastomes of Medicago and its relatives Trigonella and Melilotus, which are nested firmly within the IRLC. RESULTS: We detected abundant repetitive elements and extensive genomic rearrangements in the 75 newly assembled plastomes of 20 species, including gene loss, intron loss and gain, pseudogenization, tRNA duplication, inversion, and a second independent IR gain (IR ~ 15 kb in Melilotus dentata) in addition to the previous first reported cases in Medicago minima. We also conducted comparative genomic analysis to evaluate plastome evolution. Our results indicated that the overall repeat content is positively correlated with the degree of genomic rearrangements. Some of the genomic rearrangements were found to be directly linked with repetitive sequences. Tandem repeated sequences have been detected in the three genes with accelerated substitution rates (i.e., accD, clpP, and ycf1) and their length variation could be explained by the insertions of tandem repeats. The repeat contents of the three localized hypermutation regions around these three genes with accelerated substitution rates are also significantly higher than that of the remaining plastome sequences. CONCLUSIONS: Our results suggest that IR reemergence in the IRLC species does not ensure their plastome stability. Instead, repeat-mediated illegitimate recombination is the major mechanism leading to genome instability, a pattern in agreement with recent findings in other angiosperm lineages. The plastome data generated herein provide valuable genomic resources for further investigating the plastome evolution in legumes.


Assuntos
Rearranjo Gênico/genética , Genomas de Plastídeos/genética , Medicago/genética , Sequências Repetitivas de Ácido Nucleico/genética , Genes de Plantas/genética , Melilotus/genética , Filogenia , Plastídeos/genética
9.
Plant Biotechnol J ; 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34487631

RESUMO

Achnatherum splendens Trin. (Gramineae) is a constructive species of the arid grassland ecosystem in Northwest China and is a major forage grass. It has good tolerance of salt and drought stress in alkaline habitats. Here, we report its chromosome-level genome, determined through a combination of Illumina HiSeq sequencing, PacBio sequencing and Hi-C technology. The final assembly of the ˜1.17 Gb genome sequence had a super-scaffold N50 of 40.3 Mb. A total of 57 374 protein-coding genes were annotated, of which 54 426 (94.5%) genes have functional protein annotations. Approximately 735 Mb (62.37%) of the assembly were identified as repetitive elements, and among these, LTRs (40.53%) constitute the highest proportion, having made a major contribution to the expansion of genome size in A. splendens. Phylogenetic analysis revealed that A. splendens diverged from the Brachypodium distachyon-Hordeum vulgare-Aegilops tauschii subclade around 37 million years ago (Ma) and that a clade comprising these four species diverged from the Phyllostachys edulis clade ˜47 Ma. Genomic synteny indicates that A. splendens underwent an additional species-specific whole-genome duplication (WGD) 18-20 Ma, which further promoted an increase in copies of numerous saline-alkali-related gene families in the A. splendens genome. By transcriptomic analysis, we further found that many of these duplicated genes from this extra WGD exhibited distinct functional divergence in response to salt stress. This WGD, therefore, contributed to the strong resistance to salt stress and widespread arid adaptation of A. splendens.

10.
Anesth Analg ; 133(3): 781-793, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34403389

RESUMO

BACKGROUND: Orexin, a neuropeptide derived from the perifornical area of the hypothalamus (PeFLH), promotes the recovery of propofol, isoflurane, and sevoflurane anesthesias, without influencing the induction time. However, whether the orexinergic system also plays a similar role in desflurane anesthesia, which is widely applied in clinical practice owing to its most rapid onset and offset time among all volatile anesthetics, has not yet been studied. In the present study, we explored the effect of the orexinergic system on the consciousness state induced by desflurane anesthesia. METHODS: The c-Fos staining was used to observe the activity changes of orexinergic neurons in the PeFLH and their efferent projection regions under desflurane anesthesia. Chemogenetic and optogenetic techniques were applied to compare the effect of PeFLH orexinergic neurons on the induction, emergence, and maintenance states between desflurane and isoflurane anesthesias. Orexinergic terminals in the paraventricular thalamic nucleus (PVT) were manipulated with pharmacologic, chemogenetic, and optogenetic techniques to assess the effect of orexinergic circuitry on desflurane anesthesia. RESULTS: Desflurane anesthesia inhibited the activity of orexinergic neurons in the PeFLH, as well as the neuronal activity in PVT, basal forebrain, dorsal raphe nucleus, and ventral tegmental area, as demonstrated by c-Fos staining. Activation of PeFLH orexinergic neurons prolonged the induction time and accelerated emergence from desflurane anesthesia but only influenced the emergence in isoflurane anesthesia, as demonstrated by chemogenetic and pharmacologic techniques. Meanwhile, optical activation of orexinergic neurons exhibited a long-lasting inhibitory effect on burst-suppression ratio (BSR) under desflurane anesthesia, and the effect may be contributed by the orexinergic PeFLH-PVT circuitry. The orexin-2 receptor (OX2R), but not orexin-1 receptor (OX1R), in the PVT, which had been inhibited most significantly by desflurane, mediated the proemergence effect of desflurane anesthesia. CONCLUSIONS: We discovered, for the first time, that orexinergic neurons in the PeFLH could not only influence the maintenance and emergence from isoflurane and desflurane anesthesias but also affect the induction under desflurane anesthesia. Furthermore, this specific effect is probably mediated by orexinergic PeFLH-PVT circuitry, especially OX2Rs in the PVT.


Assuntos
Período de Recuperação da Anestesia , Anestesia por Inalação , Anestésicos Inalatórios/farmacologia , Estado de Consciência/efeitos dos fármacos , Desflurano/farmacologia , Isoflurano/farmacologia , Núcleos da Linha Média do Tálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Orexinas/farmacologia , Potenciais de Ação , Animais , Eletroencefalografia , Masculino , Núcleos da Linha Média do Tálamo/metabolismo , Neurônios/metabolismo , Optogenética , Receptores de Orexina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
11.
J Control Release ; 338: 46-55, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391835

RESUMO

Traditional combination therapy of photodynamic therapy (PDT) and photothermal therapy (PTT) is limited in the field of clinical cancer therapy due to activation by light with separate wavelengths, insufficient O2 supply, antioxidant ability of glutathione (GSH) in tumor cell, and low penetration depth of light. Here, a multifunctional nanoplatform composed of MoO3-x nanosheets, Ag nanocubes, and MnO2 nanoparticles was developed to overcome these drawbacks. For this nanoplatform, hyperthermia and reactive oxygen species (ROS) were simultaneously generated under single 808 nm near-infrared (NIR) light irradiation. Once this nanoplatform accumulated in the tumor region, GSH was depleted by MnO2 and intracellular H2O2 was catalyzed by MnO2 to produce O2 to relieve hypoxia. Ultrasound (US) imaging confirmed in-situ O2 generation. Magnetic resonance (MR) imaging, photoacoustic (PA) imaging, and fluorescence imaging were used to monitor in vivo biodistribution of nanomaterials. This provides a paradigm to rationally design a single NIR laser induced multimodal imaging-guided efficient PDT/PTT cancer strategy.

12.
Comput Biol Med ; 137: 104788, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461503

RESUMO

Histopathological images provide a gold standard for cancer recognition and diagnosis. Existing approaches for histopathological image classification are supervised learning methods that demand a large amount of labeled data to obtain satisfying performance, which have to face the challenge of limited data annotation due to prohibitive time cost. To circumvent this shortage, a promising strategy is to design semi-supervised learning methods. Recently, a novel semi-supervised approach called Learning by Association (LA) is proposed, which achieves promising performance in nature image classification. However, there are still great challenges in its application to histopathological image classification due to the wide inter-class similarity and intra-class heterogeneity in histopathological images. To address these issues, we propose a novel semi-supervised deep learning method called Semi-HIC for histopathological image classification. Particularly, we introduce a new semi-supervised loss function combining an association cycle consistency (ACC) loss and a maximal conditional association (MCA) loss, which can take advantage of a large number of unlabeled patches and address the problems of inter-class similarity and intra-class variation in histopathological images, and thereby remarkably improve classification performance for histopathological images. Besides, we employ an efficient network architecture with cascaded Inception blocks (CIBs) to learn rich and discriminative embeddings from patches. Experimental results on both the Bioimaging 2015 challenge dataset and the BACH dataset demonstrate our Semi-HIC method compares favorably with existing deep learning methods for histopathological image classification and consistently outperforms the semi-supervised LA method.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina Supervisionado
13.
Mol Biol Evol ; 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34390581

RESUMO

Genetic variation and phenotypic plasticity are both important to adaptive evolution. However, how they act together on particular traits remains poorly understood. Here, we integrated phenotypic, genomic, and transcriptomic data from two allopatric but closely related congeneric oyster species, Crassostrea angulata from southern/warm environments and Crassostrea gigas from northern/cold environments, to investigate the roles of genetic divergence and plasticity in thermal adaptation. Reciprocal transplantation experiments showed that both species had higher fitness in their native habitats than in non-native environments, indicating strong adaptive divergence. The southern species evolved higher transcriptional plasticity, and the plasticity was adaptive, suggesting that increased plasticity is important for thermal adaptation to warm climates. Genome-wide comparisons between the two species revealed that genes under selection tended to respond to environmental changes and showed higher sequence divergence in noncoding regions. All genes under selection and related to energy metabolism exhibited habitat-specific expression with genes involved in ATP production and lipid catabolism highly expressed in warm/southern habitats, and genes involved in ATP consumption and lipid synthesis were highly expressed in cold/northern habitats. The gene for acyl-CoA desaturase, a key enzyme for lipid synthesis, showed strong selective sweep in the upstream noncoding region and lower transcription in the southern species. These results were further supported by the lower free fatty acid (FFA) but higher ATP content in southern species and habitat, pointing to significance of ATP/FFA trade-off. Our findings provide evidence that noncoding variation and transcriptional plasticity play important roles in shaping energy metabolism for thermal adaptation in oysters.

14.
J Clin Sleep Med ; 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34437053

RESUMO

STUDY OBJECTIVES: Obstructive sleep apnea (OSA) is considered to be an important risk factor for the development of cardiovascular disease (CVD). This study aimed to develop and evaluate a machine learning approach with a set of features for assessing the 10-year CVD mortality risk of the OSA population. METHODS: This study included 2464 patients with OSA that met study inclusion criteria and were selected from the Sleep Heart Health Study (SHHS). We evaluated the importance of potential features by mutual information. The top 9 features were selected to develop a random forest model. RESULTS: We evaluated the model performance on a test set (n=493) using the area under the receiver operating curve (AUC) with 95% confidence interval (CI) and confusion matrix. A random forest model awarded the highest AUC of 0.84 (95% CI: 0.78-0.89). The specificity and sensitivity were 73.94% and 81.82%, respectively. Sixty-three years old was a threshold for increased risk of 10-year CVD mortality. Persons with severe OSA had higher risk than those with mild OSA. CONCLUSIONS: This study demonstrated that a random forest model can provide a quick assessment of the risk of 10-year CVD mortality. Our model may be more informative for patients with OSA in determining their future CVD mortality risk.

15.
Front Cell Dev Biol ; 9: 716300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458270

RESUMO

Sensorineural hearing loss (SNHL) affects approximately 466 million people worldwide, which is projected to reach 900 million by 2050. Its histological characteristics are lesions in cochlear hair cells, supporting cells, and auditory nerve endings. Neurological disorders cover a wide range of diseases affecting the nervous system, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), autism spectrum disorder (ASD), etc. Many studies have revealed that neurological disorders manifest with hearing loss, in addition to typical nervous symptoms. The prevalence, manifestations, and neuropathological mechanisms underlying vary among different diseases. In this review, we discuss the relevant literature, from clinical trials to research mice models, to provide an overview of auditory dysfunctions in the most common neurological disorders, particularly those associated with hearing loss, and to explain their underlying pathological and molecular mechanisms.

16.
BMC Med Inform Decis Mak ; 21(Suppl 2): 63, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330265

RESUMO

BACKGROUND: Accurately segment the tumor region of MRI images is important for brain tumor diagnosis and radiotherapy planning. At present, manual segmentation is wildly adopted in clinical and there is a strong need for an automatic and objective system to alleviate the workload of radiologists. METHODS: We propose a parallel multi-scale feature fusing architecture to generate rich feature representation for accurate brain tumor segmentation. It comprises two parts: (1) Feature Extraction Network (FEN) for brain tumor feature extraction at different levels and (2) Multi-scale Feature Fusing Network (MSFFN) for merge all different scale features in a parallel manner. In addition, we use two hybrid loss functions to optimize the proposed network for the class imbalance issue. RESULTS: We validate our method on BRATS 2015, with 0.86, 0.73 and 0.61 in Dice for the three tumor regions (complete, core and enhancing), and the model parameter size is only 6.3 MB. Without any post-processing operations, our method still outperforms published state-of-the-arts methods on the segmentation results of complete tumor regions and obtains competitive performance in another two regions. CONCLUSIONS: The proposed parallel structure can effectively fuse multi-level features to generate rich feature representation for high-resolution results. Moreover, the hybrid loss functions can alleviate the class imbalance issue and guide the training process. The proposed method can be used in other medical segmentation tasks.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Redes Neurais de Computação
17.
Infect Dis Model ; 6: 975-987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307999

RESUMO

In this paper, based on the classic Kermack-McKendrick SIR model, we propose an ordinary differential equation model to re-examine the COVID-19 epidemics in Wuhan where this disease initially broke out. The focus is on the impact of all those major non-pharmaceutical interventions (NPIs) implemented by the local public healthy authorities and government during the epidemics. We use the data publicly available and the nonlinear least-squares solver lsqnonlin built in MATLAB to estimate the model parameters. Then we explore the impact of those NPIs, particularly the timings of these interventions, on the epidemics. The results can help people review the responses to the outbreak of the COVID-19 in Wuhan, while the proposed model also offers a framework for studying epidemics of COVID-19 and/or other similar diseases in other places, and accordingly helping people better prepare for possible future outbreaks of similar diseases.

18.
Bioinformatics ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320631

RESUMO

MOTIVATION: Phosphorylation is one of the most studied post-translational modifications, which plays a pivotal role in various cellular processes. Recently, deep learning methods have achieved great success in prediction of phosphorylation sites, but most of them are based on convolutional neural network that may not capture enough information about long-range dependencies between residues in a protein sequence. In addition, existing deep learning methods only make use of sequence information for predicting phosphorylation sites, and it is highly desirable to develop a deep learning architecture that can combine heterogeneous sequence and protein-protein interaction (PPI) information for more accurate phosphorylation site prediction. RESULTS: We present a novel integrated deep neural network named PhosIDN, for phosphorylation site prediction by extracting and combining sequence and PPI information. In PhosIDN, a sequence feature encoding sub-network is proposed to capture not only local patterns but also long-range dependencies from protein sequences. Meanwhile, useful PPI features are also extracted in PhosIDN by a PPI feature encoding sub-network adopting a multi-layer deep neural network. Moreover, to effectively combine sequence and PPI information, a heterogeneous feature combination sub-network is introduced to fully exploit the complex associations between sequence and PPI features, and their combined features are used for final prediction. Comprehensive experiment results demonstrate that the proposed PhosIDN significantly improves the prediction performance of phosphorylation sites and compares favorably with existing general and kinase-specific phosphorylation site prediction methods. AVAILABILITY: PhosIDN is freely available at https://github.com/ustchangyuanyang/PhosIDN. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

19.
Front Oncol ; 11: 687878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262871

RESUMO

Objectives: To explore the relationship between ultrasound (US) features and Ki-67 labeling index (LI) of soft tissue sarcoma (STS). Methods: Forty-six patients with 47 STS lesions, between September 2014 and April 2020, were enrolled in the study. Point-biserial correlation analysis and Spearman's correlation analysis were utilized to examining the relationship between the US features and the Ki-67 LI of STS. The differences of US features between high and low Ki-67 proliferation groups were statistically analyzed by independent t test, Wilcoxon rank-sum test, and Fisher's exact test. The optimal cut-off points of US features revealing significant differences were estimated by the maximum Youden index. Results: A moderate correlation between the vascular density grade and the Ki-67 LI (ρ = 0.409, P = 0.004) was found in this study. In addition, other ultrasound features were irrelevant to the Ki-67 LI. The cut-off for differentiating low- and high-proliferation groups was grade II according to the best Youden index. The area under receiver operating characteristic (ROC) curve was 0.74 (p = 0.011) with a sensitivity of 60.6% and specificity of 78.6%. Conclusions: Only the vascular density grade of STS had a weak positive correlation with Ki-67 LI, and might be capable of predicting the proliferation of STS. Other ultrasonographic features of STS such as shape and tumor margin have no correlation with Ki-67 LI.

20.
Front Aging Neurosci ; 13: 695117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305572

RESUMO

Background: Consensus is lacking with regard to whether hearing loss is an independent risk factor for dementia. We therefore conducted a meta-analysis to clarify the relationship of hearing loss and dementia. Methods: Prospective cohort studies investigating the association between hearing loss and the incidence of dementia in a community-derived population were included by searching electronic databases that included PubMed, Embase, and Cochrane's Library. A random-effects model was adopted to combine the results. Results: Fourteen cohorts including 726,900 participants were analyzed. It was shown that hearing loss was independently associated with dementia [adjusted hazard ratio (HR): 1.59, 95% confidence interval (CI): 1.37 to 1.86, p < 0.001; I 2 = 86%]. Sensitivity analysis sequentially excluding any of the individual studies included showed similar results. Subgroup analysis according to the diagnostic methods for hearing loss, validation strategy for dementia, follow-up duration, and adjustment of apolipoprotein E genotype also showed consistent results (p-values for subgroup differences all > 0.05). Meta-analysis with five studies showed that hearing loss was also connected to higher risk of Alzheimer's disease (adjusted HR: 2.24, 95% CI: 1.32 to 3.79, p = 0.003; I 2 = 2%). Conclusions: Hearing loss may increase the risk of dementia in the adult population. Whether effective treatment for hearing loss could reduce the incidence of dementia should be explored in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...