Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Talanta ; 253: 123883, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36137494

RESUMO

At present, most countries or regions use commercial centrifuges for centrifugation, but this is out of reaching for limited-resource areas. To overcome this problem, a portable electric yo-yo as centrifuge was firstly proposed to obtain serum, and this device can be combined with paper-based analytical devices for enzyme-linked immunosorbent assay (ELISA) analysis from human whole blood. In this study, inflammatory biomarkers C-reactive protein (CRP) and serum amyloid A (SAA) were used as target biomarker to verify the performance of the proposed method. The results shows good performance and their detection limits were determined to be 580 pg/mL for CRP and 800 pg/mL for SAA, respectively. We believe this method provides a new platform of low cost and fast detection for inflammatory biomarkers in the limited-resource settings.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36000414

RESUMO

Volatile organic compounds (VOCs) are important precursors of severe pollution of ozone (O3) and secondary organic aerosols in China. Fully understanding the VOCs emission is crucial for making regulations to improve air quality. This study reviews the published studies on atmospheric VOCs concentration observations in China and observation-based estimation of China's VOCs emission strengths and emission source structures. The results reveal that direct sampling and stainless-steel-tank sampling are the most commonly used methods for online and offline observations in China, respectively. The GC-MS/FID is the most commonly used VOCs measuring instrument in China (in 60.8% of the studies we summarized). Numerous studies conducted observation campaigns in urban areas (76.2%) than in suburban (17.1%), rural (18.1%), and background areas (14.3%) in China. Moreover, observation sites are largely set in eastern China (83.8%). Though there are published studies reporting observation-based China's VOCs emission investigation, these kinds of studies are still limited, and gaps are found between the results of top-down investigation and bottom-up inventories of VOCs emissions in China. In order to enhance the observation-based VOCs emission investigations in China, this study suggests future improvements including: (1) development of VOCs detection techniques, (2) strengthening of atmospheric VOCs observations, (3) improvement of the accuracy of observation-based VOCs emission estimations, and (4) facilitation of better VOCs emission inventories in China.

3.
Analyst ; 147(16): 3756-3763, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851335

RESUMO

Ion imprinting technology was integrated on a rotational microfluidic paper- and cloth-based hybrid chip for the sensitive and selective detection of hexavalent chromium (Cr(VI)) ions. The rotational microfluidic hybrid chip consisted of CdTe quantum dot based ion imprinting fluorescence sensing cloth and three layers of paper. Users can collect fluorescence signals conveniently via rotating the paper layer to expose the corresponding cloth-based sensing component. One microfluidic hybrid chip can realize the four-set multiplexed detection of Cr(VI) ions, with each set providing three parallel measurements. Furthermore, the quantitative determination of Cr(VI) ions can be achieved via substituting the calculated fluorescence quenching value into the linear calibration curve. The ion imprinting fluorescence sensing microfluidic hybrid chip provides a simple, efficient, and user-friendly device for Cr(VI) ion detection. Moreover, it might be further adapted for other sensing systems and the point-of-care testing of pollutants in combination with portable instruments or smartphones.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Cromo , Íons , Microfluídica , Telúrio
4.
Artigo em Inglês | MEDLINE | ID: mdl-35886243

RESUMO

The quantitative analysis of the urban-rural integration development (URID) level and its driving factors is of great significance for the new-type urbanization of urban agglomerations. This study constructed a multidimensional framework in the perspective of a population-space-economy-society-ecology framework to measure the URID level from 2000 to 2020 and further explored the driving mechanism of the URID changes by a geographical detector model in the Hangzhou Bay urban agglomeration (HBUA). The results showed that the land-use change in the HBUA from 2000 to 2020 showed a typical characteristic of the transition between cultivated and construction land. The URID level in the HBUA improved from 0.294 in 2000 to 0.563 in 2020, and the year 2005 may have been the inflection point of URID in the HBUA. The URID level showed a significant spatial aggregation with high values. Hangzhou, Jiaxing, and Ningbo were hot spots since 2015, and the cold spots were Huzhou and Shaoxing. The population and spatial integration had more important impacts on URID levels in 2000, 2005, and 2020, while economic and social integration had more significant impacts on URID levels in 2010 and 2015. This study provided a deeper understanding of the evolution of URID in an urban agglomeration and could be used as a reference for decision makers.


Assuntos
Baías , Urbanização , China , Cidades , Ecologia , Geografia , Rios , Reforma Urbana
5.
Environ Res ; 214(Pt 2): 113944, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870498

RESUMO

China has shut down and abandoned a substantial number of coal mines since 1999, which have been releasing methane (CH4) for many years. However, the characteristics of China's abandoned mine methane (AMM) emissions are still unclear; this is a concerning knowledge gap because coal mines are the largest contributor to China's anthropogenic CH4 emissions. This study used two methods to estimate China's historical AMM emissions over the past 40 years (1980-2020) and to project its AMM emissions to 2060 which is the target year for China's carbon neutrality goal. The results show that China's AMM emissions increased substantially from 0.11 ± 0.03 million tons per year (Mt/yr) (3.1 ± 0.84 Mt/yr CO2-eq) in 1980 to 4.7 ± 0.94 Mt/yr (131 ± 26 Mt/yr CO2-eq) in 2020. An accelerated growth rate was found during 1998-2005, with AMM emissions rapidly increasing by approximately three times, which was consistent with the high number of mine shutdowns. In 2019, we found that AMM emissions had become the fourth largest anthropogenic source in China, higher than the national anthropogenic CH4 emissions of individual United Nations Framework Convention on Climate Change Annex I countries excluding the United States of America and the Russian Federation. If unabated, China's AMM emissions are projected to peak at 8.7 ± 2.6 Mt/yr in 2040 and reach approximately one-third of China's anthropogenic carbon dioxide emissions in 2060. This study reveals that understanding AMM emissions can help more accurately quantify China's total CH4 emissions and guide their future mitigation.


Assuntos
Dióxido de Carbono , Metano , Dióxido de Carbono/análise , Mudança Climática , Carvão Mineral , Metano/análise , Mineração , Estados Unidos
6.
Front Public Health ; 10: 934524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844856

RESUMO

In recent years, the problem of migrant workers' excessive labor has attracted much attention. The implementation of the integration policy of urban and rural medical insurance has broken the urban-rural dual division system. While improving migrant workers' health and sense of social integration, can they effectively alleviate their overwork? Based on the panel data of China Labor Dynamics Survey (CLDS) in 2016 and 2018, this paper empirically analyzes the impact of the integration of urban and rural medical insurance on migrant workers' overwork by using the differential difference model (DID). The research shows that the integration of urban and rural medical insurance can significantly alleviate the excessive labor of migrant workers; Heterogeneity analysis shows that, comparing with the new generation, the eastern region, the tertiary industry and low education level migrant workers, it is more obviously that the integration of urban and rural medical insurance alleviates the overwork of the older generation, the central and the western regions, the secondary industry and high education level migrant workers. Path analysis shows that the integration of urban and rural medical insurance will improve the social identity and health level of migrant workers, and then reduce the probability of migrant workers' overwork.


Assuntos
Seguro , Migrantes , China , Humanos , População Rural , População Urbana
7.
Adv Mater ; : e2203154, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35734896

RESUMO

Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.

8.
Sci Rep ; 12(1): 7411, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523822

RESUMO

Halide perovskite materials have been extensively explored for their unique electrical, optical, magnetic, and catalytic properties. Most notably, solar cells based on perovskite thin films have improved their power conversion efficiency from 3.8% to over 25% during the last 12 years. However, it is still a challenge to develop a perovskite-based ink, suitable for upscaling the fabrication process of high-quality perovskite films with extreme purity, good crystallinity, and complete coverage over the deposition area. This is particularly important if the perovskite films are to be used for the scaled production of optoelectronic devices. Therefore, to make halide perovskites commercially available for various applications, it is vital to develop a reliable and highly robust deposition method, which can then be transferred to industry. Herein, the development of perovskite precursor inks suitable for use at low-temperature and vacuum-free solution-based deposition processes is reported. These inks can be further tailored according to the requirements of the deposition method, i.e., we propose their use with the industrially viable deposition technique called "slot-die coating". Furthermore, a route for the preparation of low-cost and high-volume manufacturing of perovskite films on both rigid and flexible substrates is suggested in this paper. The presented approach is suitable for the fabrication of any functional layers of perovskites, that can be employed in various scaled applications, and it seeks the potential and the methodology for perovskite film deposition that is scalable to industrial standards.

9.
Front Bioeng Biotechnol ; 10: 895998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573239

RESUMO

Smooth muscle cells (SMCs) are the main functional component of urethral tissue, but are difficult to proliferate in vitro. Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have been shown to promote tissue repair by regulating the proliferation and migration of different types of cells. In this study, we investigated the effect of umbilical cord mesenchymal stem cell-derived sEV (UCMSC-sEV) on the proliferation and migration of pediatric urethral smooth muscle cells (PUSMCs) and the mechanism by which sEV regulates the function of PUSMCs. We observed that UCMSC-sEV can significantly promote the proliferation and migration of PUSMCs in vitro. UCMSC-sEV exerted proliferation and migration promotion effects by carrying the CD73 to PUSMCs and catalyzing the production of adenosine. Conversely, the effect of UCMSC-sEV on the proliferation and migration of PUSMCs were no longer observed with addition of the PSB12379 as a CD73 inhibitor. It was found that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in PUSMCs was activated by adenosine or UCMSC-sEV intervention. In summary, UCMSC-sEV promoted proliferation and migration of PUSMCs in vitro by activating CD73/adenosine signaling axis and downstream PI3K/AKT pathway. Thus, we concluded that UCMSC-sEV may be suggested as a new solution strategy for the urethral tissue repair.

10.
Microsyst Nanoeng ; 8: 53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600221

RESUMO

Nitrocellulose (NC) membranes, as porous paper-like substrates with high protein-binding capabilities, are very popular in the field of point-of-care immunoassays. However, generating robust hydrophobic structures in NC membranes to fabricate microfluidic paper-based analytical devices (µPADs) remains a great challenge. At present, the main method relies on an expensive wax printer. In addition, NC membranes very easy to adhere during the printing process due to electrostatic adsorption. Herein, we developed a facile, fast and low-cost strategy to fabricate µPADs in NC membranes by screen-printing polyurethane acrylate (PUA) as a barrier material for defining flow channels and reaction zones. Moreover, hydrophobic barriers based on UV-curable PUA can resist various surfactant solutions and organic solvents that are generally used in immunoassays and biochemical reactions. To validate the feasibility of this PUA-based NC membrane for immunoassays in point-of-care testing (POCT), we further designed and assembled a rotational paper-based analytical device for implementing a multiplexed enzyme-linked immunosorbent assay (ELISA) in a simple manner. Using the proposed device under the optimal conditions, alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) could be identified, with limits of detection of 136 pg/mL and 174 pg/mL, respectively, which are below the threshold values of these two cancer biomarkers for clinical diagnosis. We believe that this reliable device provides a promising platform for the diagnosis of disease based on ELISA or other related bioassays in limited settings or remote regions.

11.
Micromachines (Basel) ; 13(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35630207

RESUMO

Microbubbles have important applications in optofluidics. The generation and growth of microbubbles is a complicated process in microfluidic channels. In this paper, we use a laser to irradiate light-absorbing particles to generate microbubbles in capillary tubes and investigate the factors affecting microbubble size. The results show that the key factor is the total area of the light-absorbing particles gathered at the microbubble bottom. The larger the area of the particles at bottom, the larger the size of the microbubbles. Furthermore, the area is related to capillary tube diameter. The larger the diameter of the capillary tube, the more particles gathered at the bottom of the microbubbles. Numerical simulations show that the Marangoni convection is stronger in a capillary tube with a larger diameter, which can gather more particles than that in a capillary tube with a smaller diameter. The calculations show that the particles in contact with the microbubbles will be in a stable position due to the surface tension force.

12.
Front Cell Dev Biol ; 10: 804247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445015

RESUMO

Atherosclerosis (AS) is universally defined as chronic vascular inflammation induced by dyslipidaemia, obesity, hypertension, diabetes and other risk factors. Extracellular vesicles as information transmitters regulate intracellular interactions and their important cargo circular RNAs are involved in the pathological process of AS. In this review, we summarize the current data to elucidate the emerging roles of extracellular vesicle-derived circular RNAs (EV-circRNAs) in AS and the mechanism by which EV-circRNAs affect the development of AS. Additionally, we discuss their vital role in the progression from risk factors to AS and highlight their great potential for use as diagnostic biomarkers of and novel therapeutic strategies for AS.

13.
Analyst ; 147(6): 1060-1065, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35191458

RESUMO

Microcystin has been causing serious environmental pollution; however, the recognition of such compounds is still challenging because of low abundance and coexisting interfering species. In this contribution, we develop a novel microfluidic paper-based colorimetric sensor by exploiting molecular imprinting technology and Fenton reaction for on-site microcystin-RR determination in complex water samples using a smartphone.


Assuntos
Impressão Molecular , Polímeros , Catálise , Microcistinas , Microfluídica
14.
Anal Chim Acta ; 1197: 339540, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35168717

RESUMO

Integration and storage of bioactive reagents is an important and challenging task in microfluidic paper-based analytical devices (µPADs). Here, we developed a convenient and universal method to store proteins and preserve their activities in µPADs by using aqueous two-phase systems (ATPs) evolved film. A polyethylene glycol (PEG)-dextran (DEX) double-layer film was formed through dehydration of ATPs. Functional biomolecules were stored in the bottom DEX layer on the basis of the biased partitioning and rehydrated conveniently by simple addition of buffer solution at usage. As a demonstration, enzyme immunoassay (EIA) of carcinoembryonic antigen was performed successfully on µPAD integrated with antibodies. Even after 104 days of storage at 4 °C and ambient conditions, the EIA signal just lost less than 10% and 30%, which meet the storage requirements of invitro diagnosis reagents. The ATPs evolved double-layer film has double functions of stabilization and insulation, and provide a high efficiency of biomolecule preservation, thereby promoting the applications of µPADs in POC diagnostic assay.


Assuntos
Proteínas , Água , Sistemas de Liberação de Medicamentos , Dispositivos Lab-On-A-Chip , Papel , Polietilenoglicóis
15.
J Hazard Mater ; 428: 128165, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007967

RESUMO

A novel rotary cloth/paper hybrid microfluidic analytical device (µCPAD) was proposed via the synergy of the fluorescence sensing cloth-based component and rotary paper-based microfluidic analytical device (µPAD) for simultaneous detection of mercury (Hg2+) and lead (Pb2+) ions. Fluorescence sensing cloth-based component was prepared by grafting quantum dots onto cotton cloth and then modifying with ion imprinted polymers (IIP). Because the cloth has good ductility and durability, it can bear strong oscillation during the fabrication of grafting quantum dots and IIP, and brings a lot of convenience to the production process. At the same time, because rotary µCPAD was stacked by three-layer papers with designed hydrophilic channels and hydrophobic barriers, it could realize simultaneous detection of Hg2+ and Pb2+ ions by rotating top layer counterclockwise or clockwise. The fluorescence signals were obtained through quantum dots' electron transfer fluorescence quenching effect with the limits of detection were 0.18 and 0.07 µg/L, respectively. This method successfully realized the transference of specific and sensitive fluorescence sensing materials (quantum dots) onto the microfluidic device to improve the portability and expanded applications. Moreover, the novel microfluidic device may have great potential in point-of-care testing of heavy metal ions in environmental monitoring fields.


Assuntos
Mercúrio , Pontos Quânticos , Fluorescência , Íons , Dispositivos Lab-On-A-Chip , Chumbo
16.
Rev Sci Instrum ; 92(11): 114902, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852507

RESUMO

The photothermal effects have shown the possibilities for applications in optical manipulation. In this paper, an approach is demonstrated to generate and manipulate a bubble using the photothermal effects. First, a high-power laser is used to irradiate the light absorbing particles for creating a microbubble. The bubble grows up to a diameter of a few hundred micrometers in several seconds due to the diffusion of dissolved gases. The bubble does not float up and is confined at the lower boundary of the sample cell by the thermocapillary force. The force is induced by laser heating of the particles at the bubble base. Second, the bubble can be manipulated following the laser focal spot. The bubble is dragged by the horizontal component of thermocapillary force. The bubble re-grows as it moves because it absorbs the dissolved gases in its migration path. The bubble floats up finally when it grows up to the maximum size. The perpendicular component of thermocapillary force can be estimated equal to the buoyancy of the floated bubble and is about 38 nN at the laser power of 130 mW. Furthermore, we show the generation and manipulation of the bubbles in a capillary. The reason for the decrease in movement velocity in the capillaries has been studied and discussed. The approach of bubble manipulation shows a potential application in transporting the microparticles.

17.
FASEB J ; 35(11): e21942, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670018

RESUMO

Atherosclerosis is a chronic inflammatory disease. Pathophysiological similarities between chronic infections and atherosclerosis triggered interests between these conditions. The seroepidemiological study showed that Helicobacter pylori strains that express cytotoxin-associated gene A (CagA), an oncoprotein and a major virulence factor, was positively correlated with atherosclerosis and related clinical events. Nevertheless, the underlying mechanism is poorly understood. In this study, the seroprevalence of infection by H. pylori and by strains express CagA assessed by enzyme-linked immunosorbent assay (ELISA) showed that the prevalence of CagA strains rather than H. pylori in patients was positively correlated with atherogenesis. Correspondingly, we found that CagA augmented the growth of plaque of ApoE-/- mice in the early stage of atherosclerosis and promoted the expression of adhesion molecules and inflammatory cytokines in mouse aortic endothelial cells (MAECs). Mechanistically, both si-NLRP3 and si-IL-1ß mitigated the promoting effect of CagA on the inflammatory activation of HAECs. In vivo, the inhibition of NLRP3 by MCC950 significantly attenuated the promoting effect of CagA on plaque growth of ApoE-/- mice. We also propose NLRP3 as a potential therapeutic target for CagA-positive H. pylori infection-related atherosclerosis and emphasize the importance of inflammation in atherosclerosis pathology.


Assuntos
Antígenos de Bactérias/metabolismo , Aorta/patologia , Aterosclerose/sangue , Proteínas de Bactérias/metabolismo , Caspase 1/metabolismo , Células Endoteliais/metabolismo , Infecções por Helicobacter/sangue , Helicobacter pylori/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placa Aterosclerótica/sangue , Idoso , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Aorta/metabolismo , Aterosclerose/microbiologia , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Placa Aterosclerótica/microbiologia , Estudos Soroepidemiológicos , Células THP-1
18.
J Chromatogr A ; 1656: 462529, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34520890

RESUMO

Hydrophilic interaction liquid chromatography (HILIC) plays an important role in the analysis of compounds having high polarity. In this study, fosfomycin (F) was chosen as a new end-capping reagent, owing to the facile hydrolysis reaction of its epoxy group. Zirconia coated silica (ZrO2/SiO2) materials having good chemical and physical stability were prepared. D-glucose-6-phosphate (G) and D-fructose1,6-bisphosphate (FDP) were modified onto the inner and outer surfaces of the ZrO2/SiO2 microbeads. The new end-capping reagent (F) was then bonded onto the surface of the modified material through Lewis acid-base interactions. The properties (morphology, Zr content, pore size, pore volume, and carbon content) of the stationary phases (SPs) were characterized. Finally, the resulting end-capped SPs were employed to separate alkaloids and benzoic acids. Multiple interactions, including HILIC, electrostatic repulsion, ion exchange and hydrogen bonding, contributed to the retention of the analytes on the SPs. On the F-FDP-ZrO2/SiO2 column, a theoretical plate number of 31,700 plates/m and an asymmetry factor of 1.63 were achieved for berberine, exhibiting good chromatographic performance. Furthermore, the FDP-ZrO2/SiO2 column showed good acid-base stability and good potential for the analysis of benzoic acid in Sprite and ginsenoside separations. Thus, the results indicated the significant potential of using F as an end-capping reagent.


Assuntos
Fosfomicina , Dióxido de Silício , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Microesferas
19.
Analyst ; 146(17): 5255-5263, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324622

RESUMO

In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions.


Assuntos
Microfluídica , Oxigênio , Animais , Hipóxia Celular , Colódio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Impressão Tridimensional , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/metabolismo
20.
J Hazard Mater ; 419: 126476, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34323707

RESUMO

Increasingly grim environmental pollutions are closely related with the occurrence and development of diseases. However, it's obscure how environmental stress disturbs the normal physiological process, and then how endogenous reactive species mend the cases. Hypoxia/reperfusion (H/R), a common and intractable injury in aquaculture and clinic, can induce oxidative stress and ultimately cause irreversible injury to organism. Cysteine (Cys) plays essential roles in maintaining transduction of numerous reactive species and redox homeostasis in subcellular structures, cells and organisms. A great deal of fluorescence research about Cys are focusing on development of selective probes but with poor exploration of the biofunction under environmental stress. Therefore, it is of great significance to examine the bio-effects of Cys against H/R stress. In the present work, we design a fluorescent probe BCy-AC for in situ detecting Cys, the unique Enol-Keto tautomerization of fluorophore BCy-Keto propels the reaction process which will improve the sensitivity and potential application performance of the probe. BCy-AC is conveniently applied to visualize Cys in HT-22 cells, zebrafish and mice tissues. Moreover, imaging results obtained from H/R models reveal that endogenous Cys changes with hypoxia and reperfusion time and Cys pretreatment effectively defend H/R injury in cells and in vivo.


Assuntos
Cisteína , Peixe-Zebra , Animais , Hipóxia , Camundongos , Imagem Óptica , Reperfusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...